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Chapter 4. Case Study Description  
Abstract. The focus of the Chapter is specification of the case study used for validation of the 
developed software prototypes of the components of Multi-agent IDLS. It describes categories and 
instances of attacks used in the case study, data sources used and generic data structures 
representing data of the selected sources. Additionally, the Chapter specifies instances of data 
structures representing training and testing data sets used in data mining and KDD procedures and 
demonstrates examples of training and testing instances as they are used in learning procedures.  

4.1. Description of Attacks Included in Case Study  

To generate training and testing data we selected four types of attack categories ([ideval-99], [Das-
00], [Kendall-99], [Lippmann et al-99], [Lippmann et al-00], [Korba-00], [Haines et al-01], [Stolfo et 
al-00], [McClure et al-01], [Scambray et al-01], [Mahoney-03]):  

 Probing – surveillance and other probing, i.e. testing a potential target to gather information 
(e.g., port scanning).  

 Remote to local (R2L) – unauthorized access from a remote machine, i.e. attacks in which an 
unauthorized user is able to bypass normal authentication and execute commands on the target 
(e.g. via guessing password).  

 Denial of service (DOS) – attacks which prevent normal operation, such as causing the target 
host or server to crash, or blocking network traffic.  

 User to root (U2R) – unauthorized access to local superuser (root) privileges.  
Besides attack traffic, we generated background normal traffic. To form normal traffic we applied 

network consisting of three hosts including server, client 1 imitating normal work and attacks and 
client 2 imitating only normal work. The server and client 1 used Windows XP, and client 2 – 
Windows 2000. We initialized on each host three or four services (FTP, http, netbios, terminal 
services (3369 tcp)).  

The exemplars of attacks selected for each of the attack category are represented in the Tab.4.1. For 
attack generation we used the components of Attack simulator developed by authors of the Project 
([Gorodetski et al-02b], [Gorodetski et al-02a]) as well as well known utilities (nmap, PipeUpAdmin, 
etc.).  
 

Table 4.1. Attack categories and exemplars used in case study  

# Attack category Attack exemplar 
1 Probing SYN-scan  
2 R2L FTP-crack attack  

3 DoS SYN flood  

4 U2R PipeUpAdmin  
 

Probing attacks  

The essence of the probing attack consists in transmission of inquiries to the network services of 
hosts and analysis of the responses from them. The purpose of the attack is detection of used hosts, 
protocols, accessible ports of network services, creation rules of the connections identifiers, definition 
of the active network services, selection of the users’ identifiers and passwords.  

Examples of probing attacks [Mahoney-03]:  
 Port scans – testing ports with listening servers. Tools such as NMAP (Fyodor, 2003) and 

HPING (Sanfilippo, 2003) use sophisticated techniques to make scans hard to detect, for 
example, scanning with RST or FIN packets (which are less likely to be logged), or using slow 
scans to defeat an IDS looking for a burst of packets to a range of ports.  

 IP sweep – testing a range of IP addresses with ping to determine which ones are alive. 
Another way to gather a list of potential targets is to spoof a zone transfer request to a DNS 
server, as is done by the ls command in NSLOOKUP.  
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 Fingerprinting – determining the operating system version of the target based on 
idiosyncrasies in responses to unusual packets, such as TCP packets with the reserved flags set. 
This method, implemented by QUESO and NMAP, distinguishes among hundreds of 
operating system versions using only 7 packets (Fyodor, 1998).  

 Vulnerability testing – Network administration tools such as SATAN (Farmer & Venema, 
1993), SAINT (Kendall, 1998), MSCAN (Kendall, 1998), and NESSUS (Deraison, 2003) test 
for a wide range of vulnerabilities. These tools serve the dual purpose of allowing network 
administrators to quickly test their own systems for vulnerabilities, and allowing attackers to 
test someone else's system. NESSUS is open source, uses a scripting language and has an 
extensive library of tests, which is updated as new vulnerabilities are discovered. As of 
February 2003, NESSUS tests for 1181 vulnerabilities.  

 Inside sniffing – An attacker with physical access to a broadcast medium such as Ethernet, 
cable TV, or wireless, could sniff traffic addressed to others on the local net. Many protocols 
such as telnet, FTP, POP3, IMAP, and SNMP transmit passwords unencrypted.  

For generation of training and testing data in our case study we used TCP SYN scanning (SYN-
scan) attacks. TCP SYN scanning (SYN-scan) can be used for identification of active hosts (it is living 
host scanning) or active services (ports) (it is port scanning). In the first case an attacker sends SYN 
packets to the same service port to many different target hosts. Often the target hosts are queried in a 
systematic, orderly fashion and the attacker sends the probes very frequently. In the second case SYN 
packets are sent to many different ports to the same target hosts. If from the port the confirmation 
packet SYN/ACK is received, the port listens; if the packet RST/ACK is received, the port does not 
listen; if the answer is absent, the host does not work.  

Two kinds of SYN-scan used for generation of training and testing data: TCP connect scan and 
TCP Half SYN scan. TCP connect scan are based on full connection realization. Half scan is used for 
a stealth detection of the open ports on a host. The packets initializing a connection are dispatched. 
When responses come back, a connection is dropped, i.e. a packet having a flag RST is transferred. 

R2L attacks  

R2L attacks always exploit application protocols to gain control over the target. Kendall [Kendall-
99] describes several attacks, which can be grouped as follows:  

 Password guessing – Many users tend to choose weak or easily guessed passwords. An attack 
could try common passwords such as guest, the user name, or no password. If this fails, an 
attacker could use a script to exhaustively test every word in a dictionary. Any service 
requiring a password is vulnerable, for example, telnet, FTP, POP3, IMAP, or SSH.  

 Server vulnerability – An attacker exploits a software bug to execute commands on the target, 
often as root. For example, buffer overflow vulnerabilities have been discovered in sendmail 
(SMTP), named (DNS), and imap. Other bugs may allow a command to be unwittingly 
executed. For example, the PHF attack exploits a badly written CGI script installed on default 
on an old version of apache. The following HTTP command will retrieve the password file on 
a vulnerable server: GET� /cgi-bin/phf?Qalias=x%0a/usr/bin/ypcat%�
20passwd�

 Configuration error – An attacker exploits an unintended security hole, such as exporting an 
NFS partition with world write privileges. One common error is setting up an open X server 
(using the command xhost� +) when running a remote X application. The xlock attack scans 
for open X servers, then displays a fake screensaver which prompts the user to enter a 
password, which is then captured. xsnoop does not display anything; it merely captures 
keystrokes. 

 Backdoors – Once a host has been compromised, the attacker will usually modify the target to 
make it easier to break in again. One method is to run a server such as netcat, which can listen 
for commands on any port and execute them (Armstrong, 2001).  

For generation of training and testing data in our case study we have used Password Guessing 
(Cracking) attacks, including FTP-crack attacks. This attack class has a goal to gain an access (either 
as a user or as a root) to the target host. An attacker (who does not have an account on the target host) 
sends packets to that host over the network, guessing a password for a valid user. Frequently, this 
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attack is realized by a simple dictionary (i.e. by using of simple variants of the account name). It can 
be done over many services (telnet, FTP, pop, etc.). 

DoS attacks  

Denial of service attacks can target a server, a host, or a network. These either flood the target with 
data to exhaust resources, or use malformed data to exploit a bug [Mahoney-03]. The attack “Denial of 
Service” is designed to prevent legitimate users from using a system. Traditional Denial of Service 
attacks are done by exploiting a buffer overflow, exhausting system resources, or exploiting a system 
bug that results in a system that is no longer functional.  

Kendall [Kendall-99] gives the following examples, all of which are used in the IDEVAL test set 
[ideval-99]:  

 Apache2 – Some versions of the apache web server will run out of memory and crash when 
sent a very long HTTP request. Kendall describes one version in which the line "User-Agent: 
sioux" is repeated 10,000 times.  

 Back – Some versions of apache consume excessive CPU and slow down when the requested 
URL contains many slashes, i.e. "GET /////////////...".  

 Land – SunOS 4.1 crashes when it receives a spoofed TCP SYN packet with the source 
address equal to the destination address.  

 Mailbomb – A user is flooded with mail messages.  
 SYN flood (Neptune) – A server is flooded with TCP SYN packets with forged source 

addresses. Because each pending connection requires saving some state information, the target 
TCP/IP stack can exhaust memory and refuse legitimate connections until the attack stops.  

 Ping of death – Many operating systems could be crashed (in 1996 when the exploit was 
discovered) by sending a fragmented IP packet that reassembles to 65,536 bytes, one byte 
larger than the maximum legal size. It is called "ping of death" because it could be launched 
from Windows 95 or NT with the command "ping –l 65510 target".  

 Process table – An attacker opens a large number of connections to a service such as finger, 
POP3 or IMAP until the number of processes exceeds the limit. At this point no new 
processes can be created until the target is rebooted.  

 Smurf – An attacker floods the target network by sending ICMP ECHO REQUEST (ping) 
packets to a broadcast address (x.x.x.255) with the spoofed source address of the target. The 
target is then flooded with ECHO REPLY packets from multiple sources.  

 Syslogd – The syslog server, which could be used to log alarms remotely from an IDS, is 
crashed by sending a spoofed message with an invalid source IP address. Due to a bug, the 
server crashes when a reverse DNS lookup on the IP address fails.  

 Teardrop – Some operating systems (Windows 95, NT, and Linux up to 2.0.32) will crash 
when sent overlapping IP fragments in which the second packet is wholly contained inside the 
first. This exploits a bug in the TCP/IP stack implementation in which the C function 
memcpy() is passed a negative length argument. The argument is interpreted as a very large 
unsigned number, causing all of memory to be overwritten.  

 UDP storm – This attack sets up a network flood between two targets by sending a spoofed 
UDP packet to the echo server of one target with the spoofed source address and port number 
of the chargen server of the other target.  

For generation of training and testing data in our case study we have used SYN flood attack. The 
SYN flood attack consists of a storm of inquiries on installation of TCP-connections. In a TCP three–
steps handshake, the server responds to a client’s initial SYN packet by sending a SYN-ACK. The 
server is waiting for another ACK from the client up to the connection becomes “established”. 
Generally, this is not a problem if the server is only waiting for single or a few connections to 
complete the handshake. However, the server’s queue for holding “waiting for connections to be 
completed” is of finite size. Thus, if an attacker send many spoofed SYN packets from non-existing IP 
addresses to a single target port on the server then the server’s queue would fill up and the server 
would become temporarily unable to respond to any new service requests. Further, the server will 
remain in this state until the “waiting to be established” connections are timed out, which can take a 
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minute or two. During this time, legitimate clients will be unable to establish connections with the 
server on the target port.  

U2R attacks  

In User to root (U2R) attacks a user with login access is able to bypass normal authentication to 
gain the privileges of another user, usually root (e.g. various ``buffer overflow'' attacks). U2R attacks 
exploit bugs or misconfigurations in the operating system, for example a buffer overflow or 
incorrectly set file permissions in a suid root program. U2R attacks allow increasing privileges of users 
to the superuser (for example, SYSTEM).  

In our experiments we used the U2R attack “PipeUpAdmin”. It is based on well known 
vulnerability of Windows 2000 permitting to increase privileges via prediction of named pipes of 
Service Control Manager (SCM) [Scambray et al-01]. This vulnerability allows to interactively 
connected users to get SYSTEM privilege.  

The SCM service uses in intraprocess communication unique names of pipes for each 
executed service. The format of name for such a pipe is as follows: \\.pipe\net\NtControlPipe12 , 
where 12 is the pipe number. After reading the value of the Register key 
HKLM\SYSTEM\CurrentControlSet\Control\ServiceCurrent, an attacker can conclude that the next 
name of the pipe will be \\.\pipe\net\NtControlPipe13 .  

In this attack a predictability of a pipe number is used, which is created before creating of a pipe 
with the same name by service SCM. When the new service is initialized, it will connect to the 
malefactor’s pipe. After this event the malefactor’s pipe can use context of security service and 
he/she get a possibility to execute commands with the SYSTEM privilege if this privilege is used by 
the service. The utility PipeUpAdmin can be used to use this vulnerability. PipeUpAdmin adds 
account of the current user to the group of the local administrators. Let us consider an example of this 
utility usage.  

Let the user Vladimir initialize the utility:  
 
C:\>pipeupadmin 
 

PipeUpAdmin 
Maceo <maceo@dogmile.com>  
(C) Copyright 2000-2001 dogmile.com  

 
The ClipBook service is not started. More help is available by typing NET HELPMSG 3521.  
Impersonating: SYSTEM  
The account: FS-EVIL\vladimir  
has been added to the Administrators group. 
 

Then the user Vladimir executes command net localgroup and finds his name in the group of the 
local administrators:  
 
C:\>net localgroup administrators 
 
Alias name administrators 
Comment Administrators have complete and unrestricted 

access to the computer/domain 
 
Members 
------------------------------------------------------------------------------- 
Administrator 
vladimir 
 
The command completed successfully. 
 

The next action of the user vladimir to get SYSTEM privileges is to log off and again log on. This 
operation is needed since Windows 2000 has to change security token of the current user to add to it 
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the identifier SID of a new group. The security token can be changed by API function call or exit from 
the system (log off) and next log on.  

4.2. Data Sources and Structures Representing Training and Testing Data  

The data sources and generic data structures representing training and testing data described below 
were partially selected on the basis of compilation of the results published in ([ideval-99], [Lee-99], 
[Lee et al-00a], [Stolfo et al-00], [Dokas et al-02], [Lazarevic et al-03a], etc.) and partially were 
proposed by authors of the Project.  

The motivations of chosen selection are as follows:  
1. The objective of the Project is to develop technology for learning of intrusion detection on the 

basis of multiple heterogeneous data sources, therefore the number of data sources must be no 
less than two.  

2. Different attacks can produce evidences in different sources (levels) and in different sets of 
features produced on the basis of raw data of each level. This is the reason of using several data 
structures produced on the basis of the respective raw data in each data source.  

3. It is desirable to involve in intrusion detection learning procedure heterogeneous data structures 
to validate the feasibility of the developed distributed learning technology as well as multi-agent 
architecture and data fusion model of IDLS. This is the reason of using data structures of both 
time-based and relational natures.  

4. It is desirable to use the same generic data structures for each particular data source. This can 
made it easier the code writing efforts due to minimization of particular data mining and KDD 
techniques covering the learning needs. 

5. Practically, each attack is developing on a background reflecting normal user activity, this is why 
it is necessary to use training and testing data representing malicious user activity mixed with 
normal user activity background.  

Actually three data sources are selected, that are network-based (traffic level), host-based 
(operating system level) and application-based (in particular, FTP-server level). It is supposed that 
each data source is represented by four generic data structures, which are the same for each data 
source. These data structures correspond to data produced on the basis of processing of raw data. 
These data structure are as follows: 
1. Time ordered sequence (time series) of values of binary vectors of parameters specifying significant 

events of raw data of a level (traffic level, OS logs and FTP-server logs). Graphical explanation of 
this data structures is given in Fig.4.1. Specialization of this data for each data source is given in 
the next section.  
In fact, this data structure specifies time series and it is supposed that technique developed 

specifically for discrete vector time series based on correlation and regression analysis is used. 

2. Statistical attributes of particular connections (performance of a user) showed in a data source 
(traffic level, OS logs and FTP-server logs). Each such slot of data consists of the same attributes 
for each data source mapped to the time interval of connection appearance. Graphical explanation 
of this generic data structure is given in Fig.4.2.  

3. Statistical attributes of traffic (users' activity) during the short term time intervals (2 or 5 second 
duration as recommended in ([ideval-99], [Lee-99], [Lee et al-00a], [Stolfo et al-00], [Dokas et al-
02], [Lazarevic et al-03a], etc.). Graphical explanation of this data structure is given in Fig.4.3.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig.4.1. Graphical representation of data structures specifying time-ordered binary 
vectors of significant events of raw data in each data source 

T–Discrete time 
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4. Statistical attributes of traffic (users' activity) during the long term time intervals corresponding to a 
given number of connections (as a rule, d=100 connections that can correspond up to decades of 
minutes) ([ideval-99], [Lee-99], [Lee et al-00a], [Stolfo et al-00], [Dokas et al-02], [Lazarevic et 
al-03a], etc.) or 10-60 min interval. Graphical explanation of this data structure is given in Fig.4.4.  

4.3. Specification of Instances of Data Structures of Different Sources  

Let us consider main instances of training and testing data structures of three sources chosen: 
network-based source (traffic level); host-based source (operating system level); application-based 
source (FTP-server level). Each data source is presented by four generic data structures, which are the 
same for each data source.  

1. Specification of instances of data structures of network-based source (traffic level)  

The data structures of network-based source (traffic level) were produced on the basis of 
processing of tcpdump/windump data. We used for this TCPtrace utility [Tcptrace] and several 
programs developed by the authors of the Report. Let us consider instances of the data structures of 
network-based source (traffic level).  

…………………………………….

……………………………………..

C1: k21 x,...,x,x  

C2: k21 x,...,x,x  

C3: k21 x,...,x,x  

CN: k21 x,...,x,x  

T–time 
Fig.4.2. Graphical representation of data structures specifying statistical attributes of particular 

connections in each data source mapped to the respective time interval of connection performance 

C1 

C2 

C3

CN 

X(i)=< s21 x,...,x,x > 

d(1) d(3) d(2) d(5) d(6)d(4) d(8) d(7) 

Fig.4.3. Graphical representation of data structures specifying integrated (disregarding particular connections) 
statistical attributes of a data source (traffic level, OS logs and FTP-server logs) within short term time 
interval d(i) (as a rule, d=5 sec), i=1,2,… 

X(1) X(3)X(2) X(5) X(6)X(4) X(8) X(7) 

T–time 

Y(i)=< s21 y,...,y,y > 

d(1) d(2) d(3) d(4)

Fig.4.4. Graphical representation of data structures specifying integrated (disregarding particular connections) 
statistical attributes of a data source (traffic level, OS logs and FTP-server logs) within long term time 
interval d(i) corresponding to a given number of connections (as a rule, d=100 connections), i=1,2,… 

Y(1) Y(3) Y(2) Y(4) 

T–time 
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Time ordered sequence of values of binary vectors of parameters specifying significant events of 
network traffic level  

We chose the combination of values of the tag Flag of TCP packet header as parameters specifying 
significant events. In this data structure, each network packet is described by binary vector consisted 
of six values of the following separate flags: U (URG) – urgent pointer is valid; A (ACK) – 
acknowledgement number is valid; P (PSH) – tells receiver not to buffer the data before passing it to 
the application; R (RST) – reset (abort) the connection; S (SYN) – synchronize the sequence numbers 
to establish a connection; F (FIN) – finish of data transmission. Thus, each vector corresponding to 
certain network event is described by the seven features: Time, U, A, P, R, S, F, where values of the 
last six attributes are binary (1 or 0). Examples of binary vectors of parameter Flag are as follows:  
 

U A P R S F Corresponding integral value of the parameter Flag: 
0 0 0 0 1 0 S 
0 1 0 0 0 0 A 
0 1 0 0 1 0 SA 

Statistical attributes of particular connections  

The list of the parameters (features) describing this data structure is as follows:  
 

Feature Description  Value Type 
time Time of connection initialization Continuous 
duration Length (number of seconds) of the connection  Continuous 
connection_status Status of the connection (0 – Completed; 1 - Not 

completed; 2 – Reset)  
Discrete 

num_packets The common number of packets during connection  Continuous 
 

The key parameters “time” and “duration” allow for setting a time ordered sequence of attributes 
characterizing separate connections.  

Statistical attributes of network traffic during the short term time intervals (5 second)  

The list of the parameters describing this data structure is as follows:  
 

Feature Description Value Type 
count_src Number of connections made by the same source as the 

current record  
Continuous 

count_dest Number of connections made to the same destination as 
the current record  

Continuous 

count_serv_src Number of different services from the same source as the 
current record 

Continuous 

count_serv_dest Number of different services to the same destination as 
the current record  

Continuous 

Statistical attributes of network traffic during the long term time intervals (100 connections)  

The list of the parameters describing this data structure is as follows:  
 

Feature Name Feature description Value Type 
count_src Number of connections made by the same source as the 

current record  
Continuous 

count_dest Number of connections made to the same destination as 
the current record  

Continuous 

count_serv_src1 Number of connections with the same service made by 
the same source as the current record  

Continuous 

count_serv_dst1 Number of connections with the same service made to the 
same destination as the current record  

Continuous 
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2. Specification of instances of data structures of host-based source (operating system level)  

The data structures of host-based source (operating system level) were produced on the basis of 
processing of raw data of operating system log Security (for Windows 2000/XP). We used for this 
processing several programs developed by the authors of the Report. Let us consider instances of the 
data structures of host-based source (operating system level).  

Time ordered sequence of values of binary vectors of parameters specifying significant events on 
operating system level  

The values of binary vectors are signs of appearance (1 or 0) of significant events from operating 
system log Security (for Windows 2000/XP). In this data structure, each OS event is described by 
binary vector consisting of values of the parameters denoting events numbers significant for attacks 
generated.  

For our case study we chose 10 events numbers significant for the attacks generated: 512 – 
Window is starting up; 513 – Windows is shutting down; 517 – The audit log was cleared; 528 – 
Successful Logon; 529 – Logon Failure; Unknown user name or bad password; 530 – Logon Failure; 
Account logon time restriction violation; 538 – The logoff process was completed for a user; 592 – 
The virtual address space and the control information necessary for the execution of a program was 
created; 636 – Security Enabled Local Group Member Added; 680 – Logon attempt.  

Thus, each vector corresponding to certain OS event is described by eleven features: Time, 512, 
513, 517, 528, 529, 530, 538, 592, 636, 680, where values of last 10 attributes are binary (1 or 0). 

Examples of binary vectors describing OS events (without time attribute) are as follows (each 
string corresponds to particular vector, XXX – any event that is not significant for reflecting attacks 
generated):  
 

512 513 517 528 529 530 538 592 636 680 Corresponding OS Event 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 

 

Statistical attributes of particular sessions of a user performance on OS level  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
time Time of the process initialization Continuous 
duration Length (number of seconds) of the process execution  Continuous 
logged_in 1 - successfully logged in; 0 - otherwise  Discrete 
hot Number of “hot indicators” (e.g., access to system 

directories, creation and execution of programs, etc.) 
Continuous 

mem_add 1 - Security enabled local group member added; 0 - 
otherwise 

Discrete 

 

Statistical attributes of OS functioning during the short term time intervals (5 second)  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
hot Number of “hot indicators” (e.g., access to system 

directories, creation and execution of programs, etc.) 
Continuous 

failed_logins Number of failed login attempts  Continuous 
shutt_down 1 - OS shutting down; 0 - otherwise Discrete 
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starting_up 1 - OS starting up; 0 - otherwise  
(we assume that OS event “starting up” marks the 
beginning of time interval 5 sec) 

Discrete 

mem_add 1 - Security enabled local group member added; 0 - 
otherwise 

Discrete 

 

Statistical attributes of OS functioning during the long term time intervals (10 – 60 minutes)  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
hot Number of “hot indicators” (e.g., access to system 

directories, creation and execution of programs, etc.) 
Continuous 

Failed_logins Number of failed login attempts  Continuous 
shutt_down Number of OS shutting down  Continuous 
starting_up Number of OS starting up  Continuous 
mem_add Number of events when security enabled local group 

member added; 0 - otherwise  
Continuous 

 

3. Specification of instances of data structures of application-based source (FTP-server level)  

The data structures of application-based source (FTP-server level) were produced on the basis of 
processing of raw data of FTP-server log. We used for this processing several programs developed by 
the authors of the Report.  

Let us consider instances of the data structures of application-based source (FTP-server level).  

Time ordered sequence of values of binary vectors of parameters specifying significant events on FTP-
server level  

The values of binary vectors are signs of appearance (1 or 0) of significant events from FTP-server 
log. In this data structure (as for OS level), each event is described by binary vector consisted of 
several values of the parameters denoting events numbers from FTP-server log (FTP return codes) that 
are significant for attacks generated.  

For our case study we chose preliminarily only 2 events numbers (FTP return codes) significant for 
the attacks generated: 331 – User name okay, need password; 530 – Not logged in. Thus, each vector 
corresponding to some FTP event is described by three features: Time, 331, 530, where values of last 
two attributes are binary (1 or 0). Examples of binary vectors describing FTP events (without time 
attribute) are as follows (each string corresponds to particular vector, XXX – any event that is not 
significant for reflecting attacks generated):  
 

331 530 Corresponding FTP Event 

0 0 XXX 
1 0 331 
0 1 530 

 

Statistical attributes of particular sessions of a user performance on FTP-server level  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
time Time of the process initialization Continuous 
duration Length (number of seconds) of the process execution  Continuous 
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hot Number of “hot indicators” (e.g., access to system 
directories, creation and execution of programs, etc.) 

Continuous 

failed_logins Number of failed login attempts  Continuous 
logged_in 1 - successfully logged in; 0 - otherwise  Discrete 

 

Statistical attributes of FTP-server functioning during the short term time intervals (5 second)  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
Hot Number of “hot indicators” (e.g., access to system 

directories, creation and execution of programs, etc.) 
Continuous 

failed_logins Number of failed login attempts  Continuous 
successful_logins Number of successful logins  Continuous 

 
Statistical attributes of FTP-server functioning during the long term time intervals (10 – 60 minutes)  

The list of the parameters describing this data structure is as follows:  
 

Feature Description  Value Type 
hot Number of “hot indicators” (e.g., access to system 

directories, creation and execution of programs, etc.) 
Continuous 

failed_logins Number of failed login attempts  Continuous 
successful_logins Number of successful logins  Continuous 

4.4. Examples of Training and Testing Data  

Let us consider examples of training and testing data for each of four generic data structures of еру 
three sources. These examples are presented for all five exemplars of attacks concerning to four 
attacks categories selected. We describe also examples of data fixed for normal users’ work. For each 
data structure we determine only examples of attacks data differing from normal work.  

The heading for each exemplar of data is represented in the following format:  
Attack category: Attack exemplar. 

4.4.1. Examples of Training and Testing Data of Network-based Source (Traffic Level)  

1. Examples of time ordered sequences of values of binary vectors of parameters specifying 
significant events of network traffic level  

(1) Probing: SYN-scan  
Example 1 (representing only abnormal traffic):  
Representation of instances of training and testing data as ordered sequence of integral values of 

the parameters Flag:  
S R R S SA R R S R R S R R S R R S SA R R … , 

where sequence S R R describes the state “port is closed”, and S SA R R – “port is open”.  
This data can be represented as time ordered sequence of binary vectors of parameter Flag values:  

 
Values of parameter Flag  Number of 

binary 
vector 

Time 

U A P R S F 

Corresponding integral value of the 
parameters Flag 

1 16:35:18.555138 0 0 0 0 1 0 S 

2 16:35:18.555195 0 0 0 1 0 0 R 

3 16:35:19.565206 0 0 0 1 0 0 R 



 105

4 16:35:19.591847 0 0 0 0 1 0 S 

5 16:35:19.591940 0 1 0 0 1 0 SA 

6 16:35:19.592889 0 0 0 1 0 0 R 

7 16:35:20.618765 0 0 0 1 0 0 R 

… …. … … … … … … … 
 

To abridge the representation of examples of data, below in this subsection we use only 
representation of instances of training and testing data as ordered sequences of integral values of the 
parameters Flag. 
 

Example 2 (representing combination of abnormal and normal traffic):  
S X R R X S SA R X R S R R S X R R S R R X S SA X R R …  
S R X R X X S X SA R X R X S R X R S R X R S R X R S X SA R X R … , 

where X – integral value of the parameters Flag reflecting normal traffic.  
 
(2) R2L: FTP-crack  

Example 1 (representation of the completed connection reflecting two attempts of password 
guessing):  

S SA A PA PA PA PA PA PA PA PA PA PA PA PA PA FA A  
 

Example 2 (representation of the completed connection reflecting three attempts of password 
guessing):  

S SA A PA PA PA PA PA PA PA PA PA PA PA PA PA PA PA FA A 
 
(3) DoS: SYN-flood  
 

Example 1 (representation of the attack process when “victim” does not answer):  
S S S S S S S S S S S S S … 

 
Example 2 (representation of the attack process when “victim” answers):  

S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S SA S … 
 
(4) Normal traffic  

Example 1:  
S SA S PA PA PA SA F PA PA FA PA PA F FA … 

 

2. Examples of statistical attributes of particular connections  

For description of examples, we use the following features:  
 Time - Time of the connection initialization;  
 Duration - Length (number of seconds) of the connection;  
 connection_status - Status of the connection (0 – Completed; 1 - Not completed; 2 – Reset);  
 num_packets - The common number of packets.  

 
(1) Probing: SYN-scan  

Example 1:  
 

time duration connection_status num_packets 
Wed May 21 16:35:18.555138 2003 0:00:01.010068 2 3 
Wed May 21 16:35:19.591847 2003 0:00:01.026917 2 4 
Wed May 21 16:35:20.640751 2003 0:00:01.007608 2 3 
Wed May 21 16:35:19.791747 2003 0:00:01.026917 2 4 
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(2) R2L: FTP-crack  
 

Example 1 (number of packets transmitted during different connections is the same):  
 

time duration connection_status num_packets 
Tue May  6 17:53:15.359650 2003 0:00:00.181004 0 20 
Tue May  6 17:53:15.534327 2003 0:00:00.115962 0 20 
Tue May  6 17:53:15.651894 2003 0:00:00.131135 0 20 

 
Example 2 (number of packets transmitted during different connections can be changed, i.e. for one 

connection one, two or three passwords can be transmitted):  
 

time duration connection_status num_packets 
Tue May  6 17:53:15.359650 2003 0:00:00.181004 0 20 
Tue May  6 17:53:15.534327 2003 0:00:00.115962 0 15 
Tue May  6 17:53:15.651894 2003 0:00:00.131135 0 20 
Tue May  6 17:53:15.732317 2003 0:00:00.115962 0 10 

 
In this example in the first connection three password are transmitted, in the second - two, in the 

third - three and in the forth - one.  
 
(3) DoS: SYN-flood  
 

Example 1:  
 

time duration connection_status num_packets 
Fri May 23 17:05:20.232783 2003 0:00:00.000000 1 1 
Fri May 23 17:05:20.234642 2003 0:00:00.000000 1 1 
Fri May 23 17:05:20.248258 2003 0:00:00.000000 1 1 
Fri May 23 17:05:20.252783 2003 0:00:00.000000 1 2 
Fri May 23 17:05:20.258642 2003 0:00:00.000000 1 2 
Fri May 23 17:05:20.261258 2003 0:00:00.000000 1 2 

 
(4) Normal traffic  

Example 1:  
 

time duration connection_status num_packets 
Fri May 23 17:05:20.232783 2003 0:00:10.000000 0 10 
Fri May 23 17:05:20.234642 2003 0:01:01.000000 0 1000 
Fri May 23 17:05:20.248258 2003 0:00:45.000000 0 55 

 

3. Examples of statistical attributes of network traffic during the short term time intervals (5 
second)  

For description of examples, we use the following features:  
 count_src - Number of connections made by the same source as the current record;  
 count_dest - Number of connections made to the same destination as the current record;  
 count_serv_src - Number of different services from the same source as the current record;  
 count_serv_dest - Number of different services to the same destination as the current record.  
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(1) Probing: SYN-scan  
 

Example 1:  
 

count_src count_dest count_serv_src count_serv_dest 
2 2 1 1 
2 2 1 1 
3 3 1 1 
2 2 1 1 
3 3 1 1 

 
(2) R2L: FTP-crack  
 

Example 1:  
 

count_src count_dest count_serv_src count_serv_dest 
5 5 1 1 
5 5 1 1 
5 5 1 1 
6 6 1 1 
6 6 1 1 

 
(3) DoS: SYN-flood  
 

Example 1:  
 

count_src count_dest count_serv_src count_serv_dest 
750 750 1 1 
742 742 1 1 
746 746 1 1 
736 736 1 1 
740 740 1 1 
748 748 1 1 

 
(4) Normal traffic  
 

Example 1:  
 

count_src count_dest count_serv_src count_serv_dest 
1 2 1 1 
3 3 1 1 

10 12 3 2 
5 6 2 2 
3 4 1 1 

12 12 3 2 
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4. Examples of statistical attributes of network traffic during the long term time intervals 
corresponding to 100 connections  

For description of examples, we use the following features:  
 count_src - Number of connections made by the same source as the current record;  
 count_dest - Number of connections made to the same destination as the current record;  
 count_serv_src1 - Number of connections with the same service made by the same source as 

the current record;  
 count_serv_dst1 - Number of connections with the same service made to the same destination 

as the current record.  
 
(1) Probing: SYN-scan  

Example 1 (SYN-scan attacks were executed only in several connections, other connections reflect 
normal traffic):  
 

count_src Count_des count_serv_src1 count_serv_dst1 
39 46 6 12 
50 49 6 12 
65 46 9 14 
39 42 6 9 
63 57 7 13 

 
(2) R2L: FTP-crack  

Example 1 (FTP-crack attacks were executed in most of connections):  
 

count_src Count_dest count_serv_src1 count_serv_dst1 
64 61 26 12 
71 79 23 12 
79 76 39 14 
64 59 26 9 
74 83 57 13 

 
(3) DoS: SYN-flood  

Example 1:  
 

count_src count_dest count_serv_src1 count_serv_dst1 
99 99 99 99 
98 98 98 98 
97 97 97 97 
97 97 97 97 
95 95 95 95 
94 94 94 94 

 
(4) Normal traffic 

Example 1:  
 

count_src count_dest count_serv_src1 count_serv_dst1 

43 83 21 45 
50 98 25 52 
45 90 16 35 
43 87 19 39 
42 83 23 46 
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4.4.2. Examples of Training and Testing Data of Host-based Source (Operating System Level)  

1. Examples of time ordered sequences of values of binary vectors of parameters specifying 
significant events on operating system level  

(1) R2L: FTP-crack  
 
Example 1:  
 
Representation of instances of training and testing data as ordered sequence of OS event numbers:  

XXX 680 529 XXX XXX 680 529 680 529 XXX 680 529 XXX XXX XXX XXX 680 529,  
where   XXX – any event that is not significant for reflecting attacks generated;  

529 – Logon Failure. Unknown user name or bad password;  
680 – Logon attempt.  

The corresponding vectors describing OS events (without time attribute) are as follows (each string 
corresponds to particular vector):  
 

512 513 517 528 529 530 538 592 636 680 Corresponding OS Event 

0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 0 XXX 
0 0 0 0 0 0 0 0 0 1 680 
0 0 0 0 1 0 0 0 0 0 529 

 
To abridge the representation of examples of data, below in this subsection we use only 

representation of instances of training and testing data as ordered sequences of OS event numbers.  
 
(2) DoS: SYN-flood  

This attack does not result on OS shut down for Windows 2000/XP. So the OS event sequence is 
the same as for normal traffic.  
 

Example 1:  
XXX XXX XXX XXX XXX XXX 530 XXX XXX XXX XXX XXX XXX,  

where  XXX – any event that is not significant for reflecting attacks generated; 530 – Logon Failure. 
Account logon time restriction violation. 
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(3) U2R: PipeUpAdmin  
 

Example 1:  
680 528 XXX XXX XXX XXX 592 592 592 592 592 592 592 XXX 636 XXX XXX 538 ,  

where XXX – any event that is not significant for reflecting attacks generated; 528 – Successful 
Logon; 592 – The virtual address space and the control information necessary for the execution of a 
program was created; 538 – The logoff process was completed for a user; 636 – Security Enabled 
Local Group Member Added; 680 – Logon attempt.  

The first creation of the process under initialization of PipeUpAdmin.exe (corresponding to event 
592) produces two sequences of events. Each of these sequences consists of generating three processes 
(«\WINNT\system32\cmd.exe», «\WINNT\system32\net.exe» and «\WINNT\system32\net1.exe»). 
Thus, six additional events 592 are fixed.  

After malefactor cleans OS SECURITY log it will fix the following sequence of events:  
517 XXX XXX XXX 538 XXX XXX … ,  

where XXX – any event that is not significant for reflecting attacks generated; 517 – The audit log was 
cleared; 538 – The logoff process was completed for a user.  
 
(4) Normal traffic  

Example 1:  
XXX XXX XXX XXX XXX XXX 530 XXX XXX XXX XXX XXX XXX  

 

2. Examples of statistical attributes of particular sessions of a user performance on OS level  

(1) R2L: FTP-crack  
 

Example 1:  
 

time duration logged_in hot mem_add 
17:53:45 0 0 0 0 
17:53:45 0 0 0 0 
17:53:46 0 0 0 0 
17:53:47 0 0 0 0 

 
(2) U2R: PipeUpAdmin  
 

Example 1:  
 

time duration logged_in hot mem_add 
7:40:41 0:1:29 1 1 1 

 
(3) Normal traffic  
 

Example 1:  
 

time duration logged_in hot mem_add 
17:53:45 5.005 1 6 0 
17:53:47 1.654 1 0 0 
17:53:54 452.234 1 20 0 
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3. Examples of statistical attributes of OS functioning during the short term time intervals 
 (5 second)  

(1) R2L: FTP-crack  
Example 1:  

 

hot failed_logins shutt_down starting_up mem_add 
0 12 0 0 0 
0 14 0 0 0 
0 6 0 0 0 

 
(2) U2R: PipeUpAdmin  

Example 1:  
 

hot failed_logins shutt_down starting_up mem_add 
2 0 0 0 1 
2 0 0 0 0 

 
(3) Normal traffic  

Example 1:  
 

hot failed_logins shutt_down starting_up mem_add 
2 0 0 0 0 
0 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
6 0 0 1 1 
0 0 0 0 0 
0 1 0 0 0 
2 0 0 0 0 
0 0 0 0 0 

 

4. Examples of statistical attributes of OS functioning during the long term time intervals 
corresponding to 10 – 60 minutes  

(1) R2L: FTP-crack  
Example 1:  

 

hot failed_logins shutt_down starting_up mem_add 
2 120 0 0 0 

12 344 1 1 0 
0 248 0 0 0 

 
(2) U2R: PipeUpAdmin  

Example 1:  
 

hot failed_logins shutt_down starting_up mem_add 
12 1 0 0 1 
10 0 0 0 0 
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(3) Normal traffic  
 

Example 1:  
 

hot failed_logins shutt_down starting_up mem_add 
12 0 0 0 0 
44 0 0 0 0 
20 1 0 0 0 
28 0 1 1 0 
0 0 0 0 0 

 

4.4.3. Examples of Training and Testing Data of Application-based Source (FTP-server Level)  

1. Examples of time ordered sequences of values of binary vectors of parameters specifying 
significant events on FTP-server level  

(1) R2L: FTP-crack  
 

Example 1:  
 

Representation of instances of training and testing data as ordered sequence of FTP event numbers 
(corresponding to the FTP return codes):  

XXX XXX 331 530 XXX XXX XXX 331 530 331 530 331 530 XXX XXX ,  
where XXX – any event that is not significant for reflecting attacks generated; 331 – User name okay, 
need password; 530 – Not logged in.  

The corresponding vectors describing FTP events (without time attribute) are as follows (each 
string corresponds to particular vector):  
 

331 530 Corresponding FTP Event 

0 0 XXX 
0 0 XXX 
1 0 331 
0 1 530 
0 0 XXX 
0 0 XXX 
0 0 XXX 
1 0 331 
0 1 530 
1 0 331 
0 1 530 
1 0 331 
0 1 530 
0 0 XXX 
0 0 XXX 

 
To abridge the representation of examples of data, below in this subsection we use only 

representation of instances of training and testing data as ordered sequences of OS event numbers.  
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(2) Normal traffic  
Example 1:  

XXX XXX XXX XXX XXX XXX XXX XXX ,  
where XXX – any event that is not significant for reflecting attacks generated;  
 
 

2. Examples of statistical attributes of particular sessions of a user performance on FTP-server 
level  

(1) R2L: FTP-crack  
Example 1:  

 
time duration hot failed_logins logged_in 

17:53:45 1 0 3 0 
17:53:45 1 0 3 0 
17:53:46 0 0 2 0 
17:53:47 1 0 3 0 

 
(2) Normal traffic  
 

Example 1:  
 

time duration hot failed_logins logged_in 
17:53:45 5 1 0 1 
17:53:47 1 0 0 1 
17:53:54 452 7 0 1 

 
3. Examples of statistical attributes of FTP-server functioning during the short term time intervals 

(5 second)  

(1) R2L: FTP-crack  
 
Example 1:  

 
hot failed_logins successful_logins 
0 12 0 
0 14 0 
0 6 0 

 
(2) Normal traffic  

Example 1:  
 

hot failed_logins successful_logins 
2 0 1 
0 0 0 
0 0 0 
4 0 1 
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4. Examples of statistical attributes of FTP-server functioning during the long term time intervals 
corresponding to 10 – 60 minutes  

(1) R2L: FTP-crack  
 
Example 1:  

 
Hot failed_logins successful_logins 

2 120 6 
12 344 12 
0 248 8 

 
(2) Normal traffic  

Example 1:  
 

hot failed_logins successful_logins 
1 1 8 
8 0 15 

15 2 11 

4.5. Conclusion  

In the Chapter the case study used for development of software prototype of the IDLS components 
is specified.  

We determined the categories and instances of attacks to be used in the case study. To generate 
training and testing data we selected four types of attack categories: Probing; Remote to local (R2L); 
Denial of service (DOS); User to root (U2R). The exemplars of attacks selected for case study are 
SYN-scan, FTP-crack attack, SYN flood, and PipeUpAdmin.  

The data sources used and generic data structures representing training and testing data of the 
selected sources are described. We have chosen three data sources for training and testing data: 
network-based (traffic level), host-based (operating system level) and application-based (FTP-server 
level). Each data source is represented by four generic data structures. These data structures 
correspond to the data produced on the basis of raw data processing. These data structure are as 
follows:  

1. Time ordered sequence of values of binary vectors of parameters specifying significant events 
of raw data of a level (traffic level, OS logs and FTP-server logs);  

2. Statistical attributes of particular connections (performance of a user) manifested in a data 
source (traffic level, OS logs and FTP-server logs);  

3. Statistical attributes of traffic (users' activity) during the short term time intervals;  
4. Statistical attributes of traffic (users' activity) during the long term time intervals.  
The instances of data structures representing training and testing data sets to be used in data 

mining and KDD procedures are specified. The data structures of the network-based source (traffic 
level) are produced on the basis of processing of tcpdump/windump data. The data structures of host-
based source (operating system level) were produced on the basis of processing of operating system 
log Security (for Windows 2000/XP). The data structures of application-based source (FTP-server 
level) were produced on the basis of processing of FTP-server log. We used for generating these data 
structures TCPtrace utility and several programs developed by the authors of the Report. 

The examples of training and testing instances of each selected data source as they are used in 
learning procedures in case study are represented. These examples were presented for all five 
exemplars of attacks concerning to four attacks categories selected. We described also examples of 
data fixed for normal users’ activity.  
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Chapter 5. Software Prototypes of Components of Multi-agent Intrusion 
Detection Learning System and Simulation Results  

Abstract. This Chapter aims at simulation based assessment and validation of the main results of the 
Project that are methodology and technology for multi-agent IDLS design, implementation and 
deployment supported by the developed software tool and detailed realization of multi-agent 
architecture of generic IDLS. In this respect, the Chapter describes (1) the developed, implemented 
and deployed over a computer network components of the software prototype of a multi-agent 
Intrusion Detection Learning System destined for learning of intrusion detection in the framework of 
the elaborated case study (see Chapter 4) and (2) results of its testing. Design and implementation of 
the components of the above software prototype is accompanied by demonstration of the practical use 
of the developed methodology, technology and supporting software tool thus making it possible to 
validate them. The analysis of the testing results of the software prototype allow to conclude that the 
agent-based approach to IDL and elaborated methodology, technology and software tool constitute a 
promising starting platform for further research and development of the prospective IDLS. Detailed 
description of the training and testing procedures, intermediate and final results in all the steps of the 
IDS distributed learning including testing of particular base classifiers and also meta-classifier which 
produces the final decisions is given in Appendix following the Report itself.  

5.1. Generic Architecture and Engineering of IDLS Software Prototype 

Data Sources, Logical and Physical Hosts  

Engineering of a multi-agent IDLS and its decision making component, IDS1, starts with the 
preliminary analysis of the application domain, available data sources and their situation (location) 
within computer network. Data sources are here understood not as the sensor data but as records of 
databases, which are specified by their DNS names in ODBC managers of respective hosts.  

In order to simplify the system 
configuration process, the notion of 
data source logical host is introduced. 
The logical host of a data source is 
determined by the IP address of the 
physical host and by the DNS name of 
the source’s ODBC. Several logical 
hosts of data sources can be located 
on a single physical host of a LAN 
(Fig.5.1).  

Generation of IDL MAS components 
through Use of MASDK  

According to the technology 
implemented to date (see Chapters 1, 
2), in order to build an IDLS as 
applied Information Fusion MAS, the 
former is firstly specified in the 
System Kernel of the MASDK and 
resulting system is called "Empty IDL 
MAS". This specification includes 
making use of Generic agent 

(invariant component of any MAS including IDLS MAS) as a template for specification of agent 
classes (the agent classes are the same for different IF applications and that is why they can be 
specified in advance and afterwards used as reusable components in different IF systems, including 
                                                 
1 We suppose further that term "IDLS" and "IDL MAS" concerns to the multi-agent that solves both intrusion 
detection learning and intrusion detection tasks.  
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Fig.5.1. Explanation of notions of logical and physical hosts 
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IDL system). Problem domain ontology (see Fig.1.8 and also section 2.5) can be also specified one 
time by use of Ontology Editor of MASDK and then used in different IF applications including IDL 
one. Next step of IDL MAS specification consists in specification of the agent classes, that is 
specification of the agent applied component (it is different for each agent class, see Fig.1.8). At the 
same time the shared component of application ontology is specified by use of a special editor that is 
now a component of Information Fusion Learning Toolkit (see section 2.3). Afterwards agent classes 
are replicated into agent classes instances and installed in predefined computers of a LAN within 
communication environment previously deployed (at any time) within this LAN (remind that 
communication environment consists of portals installed and run in each computer in which agents of 
IDLS should be deployed and server which can be installed in any computer of LAN, see section 3.1 
of this Report). The resulting multi-agent IDLS can be called as "empty system" which has to be 
further "filled in" by particular content that is data and knowledge interpreting particular ontology 
notions, providing particular agent procedures (for example, state machines, learning and decision 
making components of the software) with concrete data. Most of the above operations are done use of 
MASDK software editors in accordance with the technology thoroughly described in Chapters 1 and 2 
of this Report.  

Thus, the initial specification of an applied IDL MAS in the System Kernel of MASDK contains 
specification of the following classes of agents (see Fig.5.2 and also Chapter 3 explaining destinations 
of the below agent classes):  

• Data Source Manager (DSM) – class of agents that support the data source interface;  
• BC – class of agents that solve the task of the input data’s basic classification; 
• MC – class of agents that enable the combination of base classifiers’ decisions;  
• KDD – class of agents responsible for the training of base and meta–classifiers. Functionalities 

of agents of this class combine the functionalities of KDD agent of data source and KDD 
meta–agent;  

• KDD Master – class of agents that enable the design and specification of the Decision Fusion 
meta–model and manages of the base and meta–classifiers training and testing.  

Fig.5.2. User interface for initial specification of the IDLS agent classes in System Kernel of MASDK 
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As it was above pointed out, the process of specification of the basic configuration of the applied 
MAS in System kernel implies:  

o replication of the instances of the corresponding agent classes, and  
o designation of logical and physical hosts that determine the “space of existence” for instances 

of software agents within given computer network (see Fig.5.3).  
The use of the notion of logical host is necessitated by technical reasons. Relationships are defined 

between physical and logical hosts, according to which, one or more logical hosts correspond to each 
physical host of LAN. The use of the notion of logical hosts allows for specifying the location of 

software agents in physical hosts in the IDL MAS specification given in the System Kernel.  
Dialog window of MASDK shown in Fig.5.3 is used for specification of configurations of software 

agents of the corresponding classes, including the indication of their location in terms of logical hosts.  
In accordance with the given data sources, the configuration of the software agents’ instances of the 

IDL MAS software prototype under development is formed in the following manner:  
1. For each data source, one logical host and three instances (according to the number of data 

sources, see Chapter 4) of software agents DSM, BС, KDD agent are specified.  
2. To specify the meta–level component of IDL MAS (let us remind that meta-level component is 

responsible for combining decisions of base classifiers and IDL MAS in design and operation 
modes management), one or several logical hosts are specified. In each logical host, one 
instance of software agents MС and KDD local is specified.  

3. Agents of class KDD Master that support the management of training and decision making 
processes should be located on the same logical host.  

Thus, the hosts of three types may be defined in the system with the agents’ allocation to them as it 
is shown in Tab.5.1. In Fig.5.4 the configuration of the IDL MAS prototype under development 
specified by use of MASDK is presented within the respective dialog window of the MASDK user 
interface.  

Generation of software agents is preceded by the stage at which correspondence between physical 
and logical hosts is established. This is done through a dialog window of MASDK shown in Fig.5.5. 
Specification of instances of software agents of the DSM class is expanded at the generation stage with 
the following data:  

Fig.5.3. Specification of IDL MAS configuration 



 118

Table 5.1. Allocation of the agents on hosts 
Type of system host  Necessary agent of host 

DSM agent  

BC agent  Local data source 

KDD local agent  

MC agent  
Meta-classification host 

KDD local agent  

Meta-training host KDD Master agent  

 
• Name (identifier) of data source that the instance of agent “works with”. This name is further 

used as identifier of the source;  
• Name (identifier) of the instance of base classifier training agent that “works” with that data 

source;  
• Name (identifier) of the instance of classification agent that is tuned for working with the 

aforementioned data source;  
• Name (identifier) of connection to database viewed as the source in the ODBC manager.  
The procedure for replication (cloning) of the mentioned instances of software agents of given 

classes is conducted through a dialog window shown in Fig.5.3. To that time, an auxiliary program 
Portal (see Chapter 3) must be launched on all physical hosts of the network during the generation of 

Fig.5.4. Specification of the system configuration in MASDK  
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agents.  
After the generation of the instances of the agent classes, the IDL MAS operates in the 

environment autonomously, i.e. independently of MASDK. In the learning mode, training and testing 
of IDS classification and decision combining agents is carried out.  

For the system’s operation, Portals should be run on all the system physical hosts, and the IDL 
MAS agents must be launched by the command of IDL MAS server.  

To start the system’s operation in learning mode (this assumes the meta-learning agent started), the 
command Start system should be chosen from the list of the predefined user commands and interfaces 
of that agent. At the system’s first start, after its deployment, an additional initialization protocol will 
be launched automatically, which configures the system in accordance with the specification of the 
existing local data sources and the system’s hosts. All the information about the system’s 
configuration is distributed among the respective agents of the system, and agents switch into 
operational mode, fully ready to fulfill the system’s functions.  

The subsequent engineering operations are supported by Information Fusion Learning Toolkit (see 
section 2.3). 

5.2. Intrusion detection KDD Master Agent  

5.2.1. Meta-level Ontology Editing 

The process of creating the target system starts with the design of the application ontology. In the 
current prototype of the system, the most simple of the developed protocols for the distributed 
application ontology engineering is implemented (“top-down” operation; this protocol is specified 
formally). Conceptually, this protocol consists of several steps. First, the shared application ontology 
is designed by the meta-level designer (“manager of meta–level”) with the subsequent dialog with 
other (distributed) designers via mediation by KDD Master Agent. The application ontology designed 
by manager of meta–level is forwarded to the instances of the agents of the class Data Source 
Manager (DSM), which enable the interface with particular data sources. Then, the sources’ experts 
(designers working with the particular data sources) tune the interpretation functions of the 
corresponding fragments of the ontology to the data sources databases.  

To create the shared application ontology, the ontology editor implemented in the KDD Master 
agent, is used. The editor is destined for solving the following subtasks:  
• Designing and editing the shared application ontology. As a result, a specification of the notions 

of the ontology, their attributes, and corresponding value domains are formed.  
• Specification of the data of the local data sources in terms of the shared ontology. As a result of 

this task solving for each local data source in the shared application ontology, the fragment of it 

Fig.5.5. Dialog for establishing correspondence between physical and logical hosts 
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is specified that further will be used in IDS operation with the data of that source. 
• Creating and editing the ontology notions derived (secondary) properties. Solving this task 

results in the creation of the list of secondary properties of the notions specified in terms of their 
attributes.  

• Creating and editing of the list of data classes. Solving this task results in forming the list of 
classes used for the specification of the input data interpretations in terms of the labels of classes 
of statuses of connections (Normal, Abnormal, etc. if any).  

Before use of the ontology editor, the KDD Master agent must be activated. The ontology editor is 
called from that agent through activating the command Ontology editor in the user interface.  

The ontology designed is an aggregate of notions with attributes. The entities may be grouped into 
equivalence classes (they are called structure classes). To determine the type of attribute, the 
predefined domain “Type of attribute” is used. It contains the possible values of types of attributes 
acceptable in the system.  

The values of this domain are taken from the PMML (Predictive Model Markup Language) 
standard. Their explanation is given in Table 5.2. 
 

Table 5.2. Values of domain “Type of attribute of the ontology” 

Value of domain Attribute’s properties 

bool Boolean scale (2 possible values: True/False) 

categorical Categorical scale – set of predefined unordered values  

ordinal Ordered scale – set of predefined values with an order relationship imposed on 
them  

continuous Numerical scale  
 

5.2.2. Editing of the Decision Fusion Meta–Model  

The structure of distributed learning and classification used in IDL MAS, Decision Fusion meta– 
model is used (see Chapter 1). The latter is specified by exploiting an aggregate of user interfaces 
implemented in agents of class KDD Master. The respective editor that is a component of Information 
Fusion Learning Toolkit (see section 2.3) is activated by the command Decision making editor.  

The main window of the editor shows the list of names of classification tasks already created by 
user. To specify and add the name of a new task, the fields Name, Description and Base entity are used. 
Arbitrary name of the task is entered in the Name field. In the Description field, a detailed comment 
for the task is entered. In the field Base entity, the notion of the application ontology is chosen, for 
which the classes have been determined and specified for the classification of instances of that notion. 
The notion chosen as the subject of classification will hereinafter be called “Base entity”. For one base 
entity, several classification tasks may be defined in the task list; their list and hierarchy are specified 
by the classification tree (see Fig.5.6). The field Entity description contains comments for the chosen 
entity of the ontology formed in the description of the ontology.  

For detailed description of the classification task chosen from the name list and the classification 
tree, the editor is used, which is activated by the Scheme button. The user window of this editor is 
shown in Fig.5.6. In the description of the classification task and the decision making scheme, the set 
of classes specified for the base entity is used. In particular, in this example four classes have been 
specified: Attack, Normal, Smurf attack and Other attack. The meaning of this particular classification 
task lies in assigning a class of decision that corresponds to one of the leaves of the classification tree 
to each instance of the base entity.  

A group of fields unified by the function Add/Replace is used to specify a new node or to edit an 
old node. The name of the node of classification tree is edited in the Name field. Fields Class 1 and 
Class 2 show names of classes of decisions that can be made in that node (the decision corresponds to 
one of the two branches of the tree stemming from it). The field Base class shows the name of the 
class assigned to the base entity at the previous level of the classification tree. For example, in the tree 
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shown in Fig.5.6, the role of Base class for the node Level2 is played by the class Attack. The name set 
in correspondence to the variable Base class for the current node is also called “precondition class”.  

Thus created decision tree is shown in the top right field. The bottom right field shows the set of 
leaves of the created tree that corresponds to the set of possible solutions specified during the 
classification of the instances of base entity.  

For a single classification task, several classification schemes can be formed, each having a 
corresponding classification tree. The identification of classification schemes is done based on the 
name of root node of the corresponding classification tree. The example (Fig.5.6) shows one 
classification tree with the root node called Main. In case several classification trees have been formed, 
the top right window shows the structure of the decision making tree whose root node’s name is 
selected in the field Root node. 

Let us remind that names of three classes, Class 1, Class 2 and Base class, are set in 
correspondence to each node of classification tree. In creating classification trees, the editor oversees 
the meeting of two conditions (constraints): (1) all three names have been specified for one 
intermediate node of classification tree, and those names are different; (2) for one decision making 
task, there can be no two different nodes with the same class of precondition.  

5.2.3. Analysis of Data Available for Classifiers Training and Testing  

Classification tree considered in the previous subsection consists of a number of nodes. Each of 
them corresponds to a certain decision making scheme, which includes several base classifiers and at 
least one meta–classifier. This scheme is called Decision Fusion (DF) meta–model (see section 1.6.2 
for details). The creation of DF–meta–model requires preliminary analysis of the input data recorded 
in the databases of sources1. The process of data analysis is initiated by the button Data Source in the 
dialog window shown in Fig.5.6. The data analysis process will take place for the classifiers involved 
in the decision-making process in the current (under consideration) node of the classification tree.  

Analysis of possibilities for choice of data: node of decision-making tree 

                                                 
1 Peculiarities of the methodology of allocation of training and testing samples to particular base- and meta–
classifiers were discussed in section 1.7) 

Fig.5.6. Editor of the classification tree of the Decision Fusion meta-model 
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The analysis of data by use of which the classifiers of the chosen node of classification tree will be 
trained and tested is performed through the dialog shown in Fig.5.7.  

The table “Data Source” shows the list of available data sources. For each of them, the following 
parameters are specified: Field Min – the minimal value of the identifier of the instance of base entity 
(key) recorded in the database of data source; Field Max – the maximum value of the identifier of the 
instance of base entity (key) recorded in the database of data source; Field Count – the total number of 
instances of base entity recorded in the database of data source. 

These values are calculated through the buttons of the same names from the group of buttons Query. 
Results of queries are stored in the Intrusion Detection KDD Master agent’s knowledge base and 
appear in the table during further operation.  

The table “Selected data sources” shows the list of data sources, with which that node “works”. As 
a rule, this list comprises all the sources whose databases contain the specifications of instances of the 
base entity. For each of them, in addition to the data already calculated, the following characteristics 
can be obtained:  

• Number of instances of the base entity, for which the first class from the description of the 
chosen node of classification tree (field Count 1) is set in correspondence as the result of 
classification;  

• Number of instances of the base entity, for which the second class from the description of the 
chosen node of classification tree (field Count 2) is set in correspondence as the result of classification. 

Queries to obtain these characteristics are formed through the buttons of the same names from the 
group of buttons “Selected”.  

For the data sources chosen by user, the diagram is automatically created (bottom right window) 
that represents a “raw top count” of the number of common instances having interpretations of base 
entity in the databases of all data sources. In the diagram, sets of common instances of base entity are 
shown in green, and the value of that estimate is shown in field Raw count in the lower part of the 
window. Calculation of this interval is performed at the click on the button Raw count. This estimate is 
calculated as the minimal number of common interpretations on all chosen data sources within the 
common interval between the minimal value of the identifier in the field Max and the maximum value 
on the field Min. These values are shown in fields Min common and Max common in the lower part of 
dialog window.  

Fig.5.7. User interface for analysis of data available for training and testing of the classifiers 
corresponding to the chosen node of classification tree 
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The exact number of common instances of base entity is shown in the group of fields “Accurate 
count calculation” in the field General. Fields Class1 and Class2 show the number of common 
instances of base entity interpreted respectively as the first and the second class of possible decisions 
corresponding to the node of decision-making tree under consideration. These values can be calculated 
after the complete lists of identifiers of recorded instances of base entity from each of the local data 
sources have been obtained. Query to obtain those lists is initiated at the click on the button Accurate 
count calculation and is performed with consideration to the classes of decisions.  

The number of instances that belong to the same entity in different data sources is determined in 
order to identify fragments of data that can be used for the training of meta– and/or base classifiers. 
Here, all instances of the base entity can be used for the training and testing of base classifiers. The 
scenario for putting together the list of such instances is described in the next section.  

Choice of data: node of classification tree, basic classification 

The choice of data for training and testing the base classifiers of a single data source starts with the 
dialog shown in Fig.5.8. The dialog is opened by clicking on the button Classifiers in the dialog shown 
in Fig.5.7. The name of the chosen data source is shown in the top part of the window. 

The top part of the window shows particular ranges of values of keys of instances recorded only on 
the corresponding data sources (the set of such instances is highlighted blue in Fig.5.7). These ranges 
can be of two types: less and/or more than range of instances common to all data sources. To describe 
the obtained separate ranges of instances and to further work with them, a criterion for their selection 
is formed automatically. These ranges of instances will be further used for the training and testing of 
base classifiers. Ranges of instances common to all data sources will mainly be used for training and 
testing of meta–classifiers; however, they can also be used for training and testing of base classifiers. 
In the last line of the table marked by the label Total, the total number of instances of entities is shown 
for designer's information.  

The data for the training of base classifiers from the range of instances common to all data sources 
is described in the group of fields corresponding to Meta-level editor. In this part of the editor, user 
can form, in manual or semi-automatic mode, the condition of selection for this data, and the 
boundaries of the selected range of events, which are shown in the fields that are marked with label ID. 

Fig.5.8. Data selection for training and testing of base classifiers 
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By clicking the button Check condition, the number of instances for each class of the node and the 
node’s total number of instances in accordance with the condition introduced by user, is calculated.  

To create the selection condition in semi-automatic mode, the button Create Condition and groups 
of fields for each of the target classes are used. Each of the groups of fields Class 1 and Class 2 shows 
the maximum (field Мах) and minimal (field Min) value of identifiers, as well as the total number of 
instances of the corresponding class. Here, the location of the marker on the scale corresponds to the 
percentage of the chosen interpretations of the corresponding class of their total number. The 
percentage, the value of identifier that corresponds to that percentage and the exact number of selected 
instances are shown in the respective fields above the selection scale.  

After the selection of data used for the training and testing of base classifiers, they need to be 
divided into training and testing. This procedure takes place in a particular dialog initiated by clicking 
on the button Training / Testing level. Here, the editor opens as shown in Fig.5.9.  

The training and testing data are shown as descriptions of groups of data used for training and 
testing of the respective base classifiers.  

Each group of data can be of simple type (all selection conditions are specified by one condition) or 
composite type (data is formed from several subsets, each one specified by its own selection 
condition). For each of these types, the dialog provides a group of elements of interface. The type of 
the sample is changed by the Simple / Composite toggle. 

Regardless of the type, there are common selection conditions for data groups. They consist of two 
parts. The first part is formed automatically on the basis of all existing group of training and testing 

Fig.5.9. Data selection for training and testing of a classifier  
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data for base classifiers (conditions of all levels of basic classifications are united through the logical 
connective “OR”). The second part is formed by user in the interface and is always joined with the 
first one by the logical connective “AND”.  

If the sample is of simple type then 
this condition is the only one, and it 
determines the selected subset of data. 
The number of instances of classes and 
the total number of instances of the 
sample may be obtained through sending 
a query to the data sources. For that, the 
button Check condition is used. The data 
received from the local data source is 
stored in the fields Count, Count Class1, 
Count Class2. 

For composite group of data, besides 
the common condition, particular 
selection conditions are specified for 
each group of data. They are recorded in 
the list in the group of fields Composite.  

The selection conditions include the 
name of the class and the percentage of 
the records from the total number of 
records, or from their explicit number. 
Each condition is formed in the group of fields in the lower part of the dialog.  

The table and list are updated by clicking the Add/Replace button. The condition is checked by 
clicking on the Check button.  

Here, a query is sent to the data source, and the results are shown in the fields Selected Count and 
Total count.  

5.3. Intrusion Detection KDD–Agent of a Source 

5.3.1. Base Classifiers Training Scenario  

The base classifier training scenario consists of a number of particular subtasks performed in a 
certain order. This scenario is represented by the state machine shown in Fig.5.10. In each of its states, 
the user solves particular subtasks through the appropriate dialogs. Let us consider these states:  
• Main State. In this state, the dialog interface is shown, through which the training of a single base 

classifier is managed and monitored.  
• Scales conversion. This subtask is considered in the case if the training data contains the attributes 

of the ordinal or categorical type. These attributes should be converted to the scales, for which 
implemented algorithms exist in the Library of training and testing methods.  

• Search for rules in favor of class. In this state, the main training subtask is solved that involves 
search for rules based on the analysis of the training dataset. The search for rules may take place 
several times, supplementing the set of previously found rules. The system behavior scenario in 
this state is implemented through a nested state machine shown in Fig.5.11. 

• Tuning of the decision-making mechanism. It is assumed that in this state, all the decision-making 
rules are found for the classifier, and the general decision making mechanism that combines 
decisions made by separate rules, is being tuned (specified).  

• Testing of classifier. In this state, the classifier is tested and its performance is analyzed.  
• Sending classifier’s description. In this state, all rules and parameters of the decision-making 

mechanism are sent to the agent of base classifier. 

Fig.5.10. Base classifier training scenario 
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5.3.2. Conversion of Features  

Current task is solved in the 
Scales conversion state. 
Conversion of the classification 
features is carried out through the 
interface shown in Fig.5.12. This 
task is aimed at converting the 
features represented in categorical 
and ordinal scales into numerical 
or Boolean. The conversion is 
done by user through the creation 
of new features and setting 
calculation functions for them that 
will use the existing and 
previously entered features and 
attributes as arguments.  

The user editor window shows 
the specification of the initial 
features and attributes, and that of 
the ones added by user. The initial 
features and attributes are shown 
in different lists (the initial features 
belong to the shared ontology of 
the application domain, and will 
never be changed by user in the 
training process). For each of 
categorical and ordinal features 
and attributes on the training 
sample data, a list of values with 
the number of their respective 
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Fig.5.11. Search for rules in favor of class state machine  
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Fig.5.12. Editor of characteristics conversion 
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instances can be drawn. To obtain such list of values by a selected attribute, click the Values button.  
The functions for the calculation of the new characteristics are described as predicates with 

arithmetic terms and functional symbols (“logical-arithmetical expressions”) that use the initial 
attributes, features and their values as terms. In the process of creating these expressions, there is an 
option of inserting the existing attributes, features and their values from the lists into the expression 
line.  

5.3.3. The VAM Method  

The VAM (Visual 
Analytic Mining) module 
is designed for extracting 
production rules1 from the 
training sample 
represented in real scales 
(See [InterRep#2] for 
details). Each of these 
rules can be viewed as a 
pattern, on whose basis 
other rules and patterns 
can be formed. Then the 
obtained patterns, in 
particular, are used 
together with binary 
features for the creation 
of the classifiers’ rules 
base.  

The main window of 
the component that implements the VAM method is shown in Fig.5.13. Left part of the window shows 
the structure of the separation rules. This structure is a set of binary “trees” where each node 
corresponds to one separation rule (predicate) defined over numerical features. Each tree as a whole 
describes one production rule represented symbolically in the lower part of the screen.  

The search for the predicate that corresponds to the node of the tree is conducted on the basis of a 
subset of data selected through the predicates of the higher nodes of the tree.  

The top part of the dialog shows information about the class, for which the production rules are 
being formed, and information about the size of data in the training sample. At the beginning of the 
training, there is only one tree with a single node that is tree’s root. In the process of training the user 
may create a new tree, or continue training for the existing leaf of the tree. For the selected leaf, the 
information about the number of instances of the class and the “counter-class” is shown. Clicking on 
the Find Predicates button will start the procedure of searching for predicate that corresponds to the 
selected leaf of the decision tree. After that, the user interface for searching and design predicates 
(Fig.5.14) opens for the subset of data that corresponds to the selected node. 

The search for predicate consists of two separate subtasks:  
• Search for “informative subspaces” in which the data of the class are best separated from the 

rest of the data, and  
• Creating the separation line in the selected subspace.  
The procedure of searching for informative subspaces may take place with different search 

parameters specified. Each search procedure is documented as particular search task. The resulting 
task list is reflected in two lists: 

 Calculated sequence – list of tasks for which the search procedure has been completed; 
 Non-calculated sequence – list of tasks that have not been completely solved (the procedure of 

searching for informative subspaces on a large sample in a space with a high dimension may 
take a long CPU time; therefore, it is implemented in such a way that it can be paused and the 

                                                 
1 Practically, it extracts premises for given conclusion. 

Fig.5.13. Main window of the VAM component  
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preliminary results can be saved in order to continue again at the next session of the program 
operation).  

The following actions need to be completed in order to form a particular search task:  
• specify the name in the field Name sequence; 
• specify the dimension of the sought subspace in the field Dimension. Only subspaces of 

dimensions 1 and 2 are suitable for visual analysis. For subspaces of larger dimensions, the 
formula for separation surface is formed automatically but the results of such “automation” 
have not yet analyzed or validated because this takes a lot of efforts with regard to a task that 
is not in the Project focus;  

• select the subset of numerical features on which the subspace of the specified dimension will 
be searched for, in the list Signs list (by default, all signs are selected); 

• select one of the methods for ordering of the subspaces according to a selected measure of 

Fig.5.15. Histogram for analysis of the found subspaces 

Fig.5.14. Dialog for searching and forming predicates 
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informativeness from the ones implemented in the system, in the field Method find. 
Any search task from the list Non-calculated sequence can be executed by clicking on the Search 
button. After the search procedure has been completed, the task will move to the Calculated sequence 
list. The results of search for subspaces for any task from that list can be analyzed by clicking the 
Analysis button. Here, the user will see the interface for analysis of the found subspaces. The user will 
see a list of subspaces of the specified dimension ordered by the value of interclass distance (the 
algorithm for calculating the distance is determined by the subspaces search method). The graphical 
diagram (histogram) of that distribution can be viewed by switching to Chart in the menu. An example 
of the distribution of values of interclass distance in various two-dimensional subspaces is shown as a 

Fig.5.16. Dialog for creating the separation rules in one-dimensional subspaces  

Fig.5.17. Dialog for creating the separation rules in two-dimensional subspaces 
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diagram in Fig.5.15. By analyzing the search results, user chooses the best subspaces for further 
analysis. After the analysis window is closed, the selected subspaces are moved to the Selected 
subspaces list. User can also add other subspaces to this list using the New subspaces field without 
activating the search procedure. The subspaces selected for analysis are analyzed individually. Here, 
the optimal separation line is sought, and the predicate is created.  

For analyzing the subspace selected from the list and for forming the predicate, the Add Predicate 
button needs to be clicked on. The interface for creating the separation rules depends on the dimension 
of the subspace. For one-dimensional subspaces, the interface is shown in Fig.5.16. For two-
dimensional subspaces, the separation rules finding interface is shown in Fig.5.17.  

After the editing of the separation rule has been completed (or after it has been created 
automatically for subspaces of dimensions higher than 2), user is asked to enter the name for the newly 
formed predicate, which is added to the list of designed predicates.  

The list of formed predicates shows the obtained predicates and the corresponding probabilities of 
correct classification. For each predicate, full properties of classification quality can be obtained 
(based on the confusion matrix) by clicking on the Get property button. After the analysis of the 
obtained predicates, user can choose any one of them to be a node of the tree using Select button. Here, 
the list of the tree for which the search was conducted turns into a node, and two leaves are added to it 
according to the partition of data chosen by the classifier.  

After the procedure for creating the predicates has been completed, and the main interface window 
of VAM is activated, the resulting predicates are added to the main list, which is to be used for the final 
search of the classifier’s production rules together with the initial logical attributes of the training 
sample.  

5.3.4. The GK2 Method 

The GK2 module is designed for extraction production rules from the training data sample that 
consists of logical attributes and predicates found through the VAM procedure. The main interface 
window of the GK2 module is shown in Fig.5.18.  

Group of fields “Source data” shows information about parameters of the initial training sample. 
The rules extraction 
algorithm utilized in the 
module only works on 
consistent data. Data are 
consistent if it does not 
contain coinciding data 
vectors that have different 
classification within a node. 
However, the real input data 
may contain inconsistencies 
(e.g., due to limited 
dimension of representation 
space presented by the 
vector of features used). 
Therefore, before the search 
for rules is initiated, the data 
needs to be put through the 
clearing procedure. This 
procedure is initiated by 
clicking the Clear data 

button. The properties of data sample ready for training are shown in the group of fields Cleared data.  
For the rules extraction algorithm’s operation, its parameters need to be specified in the group of 

fields Search parameters: 
- Rule depth  - maximum length of the sought rules; 
- MIN coverage  - minimal coverage of the instances of the class by the rule. 

Fig.5.18. The main interface window of the GK2 module 
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The rules finding procedure is initiated by clicking on the Search rules button. The found rules are 
shown in the list Rules.  

5.3.5. Training Results’ Analysis 

The analysis of the obtained rules is conducted through the dialog whose interface is shown in 
Fig.5.19. The main tasks solved by user through that interface are: 

• Analysis of the quality of the obtained rule, and  
• Selection of data for continued training and obtaining new rules. 
Rules are analyzed from the standpoint of probabilities of correct classification provided by them, 

and the coverage of the implementations of both the training and the testing samples. The results of the 
analysis of obtained rules on the training sample are shown in the top window of the dialog, and the 
results of analysis on the testing sample – in the lower window of the dialog. Each of these windows 
shows the complete list of the extracted rules. Here, for each of the rules obtained, the degree of its 
correct classification for the class and the counter-class separately is shown graphically in a particular 
table sell. All probabilities from the confusion matrix are also shown for the selected rule. Besides the 
above results on each rule, the sell All Rules shows the results of integrated analysis of the entire set of 
obtained rules as a whole.  

The rule can be included into the classifier’s rules base by double-clicking on the appropriate cell. 
If it is necessary to continue the training process, the selection of data happens in the following 

manner. The desired coverage factor of data by the rules is specified in the list Selection Learning. 
After that, the data (instances) that have the coverage factor in respect to the extracted rules less than 
or equal to the specified value are automatically selected. Apparently, in the beginning of rules 
extraction procedure, when no rules have yet been extracted, choosing data with the coverage factor of 

Fig.5.19. The interface for the analysis of the extracted rules  
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0 will coincide with the entire training sample. The position Selected indicates the results of choosing 
data for further training on the diagram.  

After the interface is closed by clicking on the ОК button, the obtained data are used for further 
training, and the selected rules are added to the classifier’s rules base.  

5.4. Meta-level Intrusion Detection KDD Agent  

The main difference between the training of meta–classifiers and the training of base classifiers 
lies in the fact that their training utilizes data computed by the base classifiers which decisions are 
combined by the respective meta–classifier. The computation of input data for training and testing of 
meta–classifiers is the function of the meta–classifier training agent that is Meta–level KDD agent. For 
each meta–classifier training task, this function is represented in terms of state machine for preparing 
input data and it is initiated in the Meta–level KDD agent. A diagram of the state machine states is 

shown in Fig.5.20.  
During the operation of the state machine, meta–classifier training agent requests training data 

from the Data source managing agents. Upon the receipt of that data the state machine goes into 
waiting state if at least one of the training agents of the respective base classifiers has not completed 
the training process. After the training of all the necessary base classifiers has been completed, the 
procedure (protocol) for forming data for the training of meta–classifier that corresponds to one data 
source shown in Fig.5.21 is initiated. That procedure is executed for each of the base classifiers whose 
results are being generalized by the meta–classifier in training.  

The GK2 component is used for the training of meta–classifier and finding the corresponding rules.  
The training results are analyzed through the rules analysis interface used in the analysis of base 

classifier training.  

5.5. DSM-Agents  

The main task of the data source management agent is enabling direct access to data and 
subsequent transformation of the data to the format of the shared application ontology. For that 
purpose, the data formation state machine is specified in the agent, and its diagram is shown in 
Fig.5.22.  

Each DSM-agent enables access to the single data source determined through the name of the 
database in the ODBC manager. The name of that data source is stored in the agent’s database. When 

Training and testing data 
for meta-level is prepared  

Send data readiness notification 

Request classifying data from 
 the classifying local source 

Receipt classified data  

Request decisions used 
classifier 

Receiving used base 
classifier decisionsWaiting base classifiers 

training process 

Fig.5.20. State machine for preparing meta-
level input data 
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the agent is started, the state machine is activated 
that initiates the graph of application domain 
ontology notions in the memory. Attributes of 
object domain entities are leaves of that graph. In 
the nodes of the graph, meta-notions and 
expressions for their calculations are specified. 
Connections to the nodes of the lower level 
indicate the notions of the application domain 
ontology that are involved in the expression. 

The tuning of the ontology of object domain 
notions of the data access agent is conducted by 
the database administrator. Here, his/her task is 
creating the VIEW objects in the database with 
fields that correspond to the attributes of notion 
(notions) of the object domain, and the notion 
instance identifier field. The dialog initiated 
through the command Open DB Gateway editor 
is designed for the tuning of the agent’s interface 
with an external database. The left part of the 

dialog window shows all entities and attributes of 
the object domain ontology that are described in the 

current data source. The right part of the window shows the list of objects of the database and their 
specifications. Through the appropriate buttons, administrator may establish correspondence between 
notions and attributes of the application domain ontology and the object of the database.  

5.6. Testing of the Designed IDS Prototype and Assessment of Learning Quality 

5.6.1. Peculiarities of Training and Testing Data and Respective Procedures 

The meta-classification procedure described in Chapter 1 possesses certain peculiarities entailed by 
the fact that IDS is a real-time system and different base classifiers make their decisions concerning 
the same connection at different time. This peculiarity entails specificities of both forming meta-
learning data and meta-classification (decision making in meta-level) procedures.  

Let us consider the question of how meta-data are computed and what new problems have to be 
resolved in organization of these computations. While using meta–classification approach, the meta-
data is composed of the decisions of the base classifiers which decisions are combined in meta–level 
by meta–classifier. Since intrusion detection is real-time procedure and output of classifiers are 
presented as flow of decisions, the time of occurrence of some events can be applied as an attribute 
used for identification of the decisions that has to be composed in a meta-data instance.  

An event is understood as appearance of new decisions of base classifiers in its output stream of 
decisions represented in the format <Decision of base classifier X, Time of decision producing>.  

Each base classifier makes its decision at the time when it receives all the data needed for making 
decisions and it does not produces decision if the required data are incomplete. This means that at a 
time some base classifiers have already produced decisions but other one not. Therefore, to combine 
decisions, it is necessary to wait the latter. At the same time, each decision has its own life time and it 
can be assessed as outdated to the time when other decisions constituting meta–data have made. 

Thus, this leads to the following formal model of meta–data:  

(1) K base classifiers 1BC – KBC  which output is represented as a stream of decisions at the 
ordered by random time moments; 

(2) Events of the output stream of each particular base classifier are assigned by "life time" 
1TL – KTL and if it is not used within the respective time interval then the respective 

event is assigned "Null".  

Initialization 

Agent operation 
is finished 

Initialize of ontology 
notion graph 

Producing of dataset by definition

Main state Producing of DB 
characteristic 

Definition of dataset 
exist 

Request of local DB 
characteristic exist. 

Change of ontology 

Fig.5.22. Data formation state machine  
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Explanation of the above model can be found in Fig. 5.23. This means that it is necessary to use a 
particular way to compose the decisions in the instance of meta-data. In general case, this question 
should be carefully analyzed but we will use the simplest of strategy. It is as follows: 

If an event occurs in a base classifier then all other ones submit to meta-level its latest decisions 
of their decision streams. At that, if iievent TLTT ≤−  (i-the number of base classifier, T–the 

current value of time, TL–some “outdating time” constant) then the decision of the respective 
classifier is missed (it is outdated).  

Let us use this strategy of composing meta-data from particular base classifiers' decisions.  
In the developed Meta-model of decision fusion, different classifiers are presented. Their 

peculiarities are briefly as follows:  
(1) For classifiers that use information of network level (stream of packet headers, data aggregated 

per 5 seconds and aggregated data per 100 connections): an event occurs when connection is 
completed. In turn, completion of such an event can occur in two cases that are (1) the connection is 
completed normally and Operating system fixes this completion and (2) it is "completed" due to 
timeout after same waiting period. The second case takes place for SYNFlood attack presented in the 
case study. Since duration of a particular connection corresponding to SYNFlood attack can be long 
enough (as compared with the dynamics of connections stream) and its particular connection looks 
like normal connection it does not influence on the decisions of the respective base classifiers. This 
attack can be only detected in higher levels of data abstraction considering attacks carrying out in 
several connections. 

(2) For classifiers that make decisions of the basis of aggregated data per a number of connections: 
In these classifiers input events occur at the time of beginning of a connection and classifiers' 
capabilities of various attack detection depends on the "width T∆ of the sliding window" and shift ∆  
In the case study used in this Project T∆ =100 and ∆ =1 for the data sample of network-based level 
and T∆ =30 and ∆ =3 in application-based level.  

Connections, BCconn 

Aggregation in 5 sec., BCagreg5sec 

Aggregation in N connections. BCagregNconn 

t

T1 TK

Event 1 initiated by 
completion of 5sec. 

time period. 

Event K initiated 
by completion of 

a connection. 

∆T< TlifeBCconn

∆T< TlifeBCagregNconn ∆T< TlifeBCagregNconn 

∆T> TlifeBCagreg5sec. 

T Value BCconn Value BCagreg5sec Value BCagregNconn 
T1 Value exists Value exists Value exists 
TK Value exists NULL Value exists 

Fig.5.23. Explanation of the model of meta-data for training and testing of meta-classifier 
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(3) For classifiers that make decisions of the basis of aggregated data per time period: their 
capabilities of various attack detection depend on the width T∆  of time window and shift ∆ . In the 
case study used in this Project T∆ =5 seconds but ∆  is variable in terms of time but this time is equal 
to the time interval between two adjacent connections.  

(4) For meta-classifier, an important note concerns to the assumptions used in computing of meta–
data used for training and testing. They are as follows: 

–If decision of a base classifier is absent (NULL) then such meta–data is excluded from 
training and testing sample of meta-data. We are forced to accept this assumption because 
the software capable to mine data with missing values is absent in the library of training and 
testing data1; 

–In the strategy used in the developed Prototype outdating time iTL  is equated to eternity for 
all base classifiers.   

(4) In each instance of meta–data additional Boolean features are added that indicate an event 
triggered the meta–classifier to make a decision and they can be of three types, i.e. initiating meta–
classifier to make decision. For example, the senses of these features in network-based level are as 
follows: 

– InitConn – decision making of base classifier was triggered by connection completion;  
– Init5sec – decision making of base classifier was triggered by completion of time interval of 5 

second; 
– Init100conn – decision making of base classifier was triggered by completion of interval 

containing 100 connections. 

5.6.2. Description of Training and Testing Results and Evaluation of Classification Quality 

Let us comment the results of training and testing carried out by the developed software prototype 
of IDL MAS. Let us start from such comments for the base and meta–classifiers of the network level.  

Meta–classifier of this level uses the decisions of three base classifiers that are BK_ConnAgreg, 
BK_ConnPacket and BK_Agreg5sec. The objective of the classification on the basis of the network-
based data sources is to distinct “Normal” connections from "Abnormal" ones (see Fig.5.24). The 
resulting probabilities of perfect classification of the best base classifier are 0.73 (over training 
sample) and 1,0 (for the testing sample). At that, the same probabilities for meta–classifier are 0.81 
and 1,0 respectively. Let us comment the cases of false positives (missing of attacks) of the meta–
classifier. Over the training sample this probability is equal to 0,04 and for the testing sample it is 
equal to 0,02. The total number of cases in which meta–classifier made such incorrect decisions is 
equal to 15 (over both training and testing samples). In 11 cases, FTPCrack attack was missed but the 
rest 57 cases of this attach were detected by meta-classifier as suspicious connections that is why these 
cases are determined correctly as Abnormal. The same concerns to 1 case SYNFlood attack. 3 cases of 
the PipeUpAdmin attack were completely missed by meta-classifier handling with network level data 
sources. This means that it is necessary to use other than network level data sources, for example, 
host-based data source (audit trail of Operating System). An additional note is that this attack 
practically has to be considered as preparation phase to an attack carried out according to a scenario in 
which this attack is a step. Network-based level presents no evidences of PipeUpAdmin attack.  

Let us further comment the training and testing results of the base and meta-level classifiers which 
make decisions of the basis of the data sources of the application-based level, particularly on the basis 
of data sources representing performance FTP server (see Fig.5.25). Note that these data sources were 
used to provide the IDS system with the capability to detect the FTPCrack attack.   

The highest values of the probabilities of perfect classifications provided in this level by a base 
classifier are equal to 0,86 (over the training sample) and 1,0 (over the testing sample). At that the 
respective values provided by the meta-classifier of the application-base level are 0,87 and 1,0 
respectively.  
 

                                                 
1 A technique that is capable to learn from data with missing values is developed and tested but not implemented 
in the form required to be included in the library. 
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Let us comment the cases of false negatives (missing of the attack cases) by meta–classifier. The 

total probability of false positives is equal to 0,03 over the training sample and 0 over the testing one. 
In total 1 case was missed. It corresponds to the first connection of those composing this attack. The 
attack is determining by this time after the second connection. Since FTPCrack cannot be completed 
by the first connection then this cannot be completed this attack can be determined in advance thus 
making it possible to prevent its dangerous consequences.  

The total number of false positives (false alarms) is equal to 17 and all of them occurred on training 
data sample. Thus, the probability of false positives is equal to 0,18 over training data sample and 0 
over testing one. All these cases correspond to 8 connections which immediately following FTPCrack 
attack being performing from the same hosts as the hosts from which these attacks were performed.  

Fig.5.24. Software prototype developed on the basis of network layer data for Abnormal recognition: The 
probability of perfect classification of the IDS on testing dataset of size of 789 is equal to 0,98 
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Fig.5.25. Software prototype developed on the basis of FTP server’s data for FTPCrack attack recognition: 
The probability of perfect classification of the IDS on testing dataset of size of 138 is equal to 1,00 
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5.7. Conclusion  

The Chapter describes the implemented software prototype implementing the main components of 
IDLS and presents some simulation results demonstrating the practical use of the developed IDL 
methodology, technology and supporting software tool.  

According to the technology implemented in order to build an IDL MAS (including IDS and IDLS) 
as applied Information Fusion MAS, the former is firstly specified in the System Kernel of the 
MASDK by making use of Generic agent as a template for specification of agent classes. In parallel 
problem domain ontology of IDL is also specified. Next step consists in specification of the IDS and 
IDLS agent classes and the shared component of application ontology. Then agent classes are 
replicated into agent classes’ instances and installed in predefined computers. The resulting IDLS has 
to be further “filled in” by particular content (data and knowledge interpreting particular ontology 
notions, providing particular agent procedures with concrete data). After that the IDL MAS operates in 
the environment independently of MASDK. In the learning mode, training and testing of IDS 
classification and decision combining agents is fulfilled.  

In accordance with the given data sources, the configuration of the software agents’ instances of the 
IDL MAS software prototype is formed in the following manner: (1) For each data source, one logical 
host and three instances (according to the number of data sources) of software agents DSM, BС, KDD 
agent are specified; (2) To specify the meta–level component of IDL MAS, one or several logical 
hosts are specified. In each logical host, one instance of software agents MС and KDD local is 
specified; (3) Agents of class KDD Master that support the management of training and decision 
making processes are located on the same logical host.  

The base classifier training scenario by the KDD–agent of a source consists of a number of 
particular subtasks performed in a certain order: Scales conversion to the scales, for which 
implemented algorithms exist (if the training data contains the attributes of the ordinal or categorical 
type); Search for rules in favor of class; Tuning of the decision-making mechanism; Testing of 
classifier; Sending classifier’s description to the agent of base classifier.  

The training of meta classifiers is based on usage of data computed by the base classifiers which 
decisions are combined by the respective meta classifier. The computation of input data for training 
and testing of meta classifiers is the function of the Meta level KDD agent.  

The main task of the data source management agent is enabling direct access to data and 
subsequent transformation of the data to the format of the shared application ontology. 

In experiments with the software prototype of IDL MAS components the following meta-
classification and data fusion model is realized: (1) K base classifiers are used which output is 
represented as a stream of decisions at the ordered by random time moments; (2) If an event occurs in 
a base classifier then all other ones submit to meta-level its latest decisions of their decision streams; 
(3) Events of the output stream of each particular base classifier are assigned by some “life time" and 
if it is not used within the respective time interval then the respective event is assigned “Null”.  

The analysis of the testing results of the developed software prototype allow to conclude that the 
agent-based approach to IDL and developed methodology, technology and software tool constitute a 
promising starting platform for further research and development of the prospective IDLS. The 
developed software prototype of IDL MAS showed, for instance, the following results: (1) The 
probability of perfect classification on testing dataset of size of 789 on the basis of network layer data 
for Abnormal recognition is equal to 0,98; (2) The probability of perfect classification on testing 
dataset of size of 138 on the basis of OS and application layers for FTPCrack attack recognition is 
equal to 1,00.  
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Project Conclusion 
 

The objectives of the Project, as it was formulated in the Work Plan, were development of the 
formal model, architecture, and software prototypes of the basic components of the intelligent Multi-
agent Learning System intended to provide adaptability of the intrusion detection system (IDS) to the 
unknown attacks against computer network.  

In other words, the Project objective was to find the answer on the question: Which advantages 
are provided by use of the multi-agent technology in intrusion detection learning system and to prove 
the answer via practical development the respective mathematical basis, architecture and technology 
for intrusion detection learning (IDL). The preliminary motivation of use of multi-agent technology in 
the scope of interest is given in the introductory chapter of this Report that is Chapter 1.  

We focused our research on the development of such components of security systems that provide 
the possibility “to learn detection of new attacks and counter-measures in a semi-automatic mode in 
order to eliminate, as much as possible, the manual and ad-hoc elements from the process of building 
an intrusion detection system” [Lee-98]. Thus, it should be emphasized that one of the main 
requirements to intrusion detection rules formed by such learning components is supporting 
identification of novel attacks and also exhibition of a low false positive rate.  

The contemporary studies on data mining for intrusion detection and IDLS prototyping show that 
existing approaches and techniques cannot completely cover the needs of IDL and one of the most 
promising approaches to IDSs development is to consider them as a particular case of data and 
information fusion systems. An important peculiarity of such a view of intrusion detection is that 
computer network security situational awareness results from composition of decisions produced on 
the basis of particular data separately providing only partial awareness. But there is lack of researches 
which practically follow this paradigm. Our research is exactly focused on the development of IDLS 
components based on use of data and information fusion principles and built as multi-agent system.  

Formally, IDL task considered in the Project as an application of the general Knowledge Discovery 
from Databases (KDD) and data and Information Fusion (IF) problem, but it is very specific and 
differs in many respects with regard to the most "traditional" KDD and IF applications. The main 
specific properties are as follows:  

1. Formidable diversity of attacks (a great deal of existing attack types and diversity of ways of 
their implementations, increasing number of newly being invented attacks);  

2. Multiplicity and diversity of data sources reflecting user’s activity (information can be got from 
numerous heterogeneous sensors monitoring input traffic, audit trails, operational system, servers, 
applications, directories, databases of user profiles, etc.);  

3. Large size and dimensionality of learning data (sensors measure and/or compute numerous 
characteristics in high frequency real-time mode);  

4. Diversity of data sources from several viewpoints (IP-packets and their components, symbolic 
data measured or computed in categorical, Boolean and real-valued scales, temporary ordered 
sequences and subsequences of events with many attributes, data represented at different 
generalization level, data derivative due to raw data preprocessing and also high-level computations);  

5. Data coherency problem that is understood as the necessity to identify the records of data of 
different sources associated with the same connection and representing the same “example“ of  user’s 
activity (e.g. associated with the same attack).  

Thus, in the Project, IDS is considered as multisensor knowledge-based IF system. The respective 
IDL is considered as distributed multi-level data mining and knowledge discovery problem to be 
implemented on the basis of multi-agent architecture.  

The following particular results have been planned to receive within the scope of the Project:  
• learning task ontology, allocation of learning tasks over generic learning agents and 

development of the architecture of their interaction within Multi-agent Learning System;  
• mathematical basis and algorithms realizing learning functionalities of the particular agents;  
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• software prototypes of the components of the Multi-agent Learning System based on 
theoretical results of the research;  

• simulation-based evaluation of the properties, advantages and disadvantages of the developed 
multi-agent model and architecture of the Multi-agent Learning system aimed to support 
adaptability and learnability of the Computer Network Security System.  

All the tasks provided by the Project and scheduled according to the Work Plan are successfully 
solved and its results make it possible to positively answer on the question formulated above.  

The developed methodology and technology of multi-agent intrusion detection learning based on 
data and information fusion paradigm can be used in contemporary IDS. It takes into account main 
specific properties described above.  

The main conclusions based on the results received in the Project can briefly be formulated as 
follows:  

1. The main peculiarities of intrusion detection learning technology result from distributed nature 
and heterogeneity of audit data (see Chapter 1). The traces of illegitimate activity of users are reflected 
in multiple distributed and heterogeneous data sources. The data can be represented in different data 
structures and measured in different measurement scales, be of different accuracy and reliability, they 
may be incomplete and uncertain, and contain missing values, etc. These properties put specific 
problems within IDLS design and implementation (combination of these problems composes a so-
called “data non-congruency problem”): monosemantic understanding of the terminology used by 
different components of IDLS, entity identification problem, problem of diversity of data 
measurement scales of training data components, non-coherency of data measurement scales problem, 
etc.  

2. The peculiarity of our multi-agent technology for IDL is that it is a specialization of a technology 
developed for the design and implementation of more general class of information fusion systems (see 
Chapter 1). The basic components of the methodology concerns such particular components of the 
data and information fusion systems as (1) Ontology, its roles, structure and its interconnection and 
communication with distributed data and knowledge bases; (2) Structure of decision making and 
decision combining specified in terms of Decision Fusion meta–model that is constituted by 
classification tree (in the top level) and by the set of Decision making trees each of which is mapped to 
a node of classification tree; (3) Structure of distributed knowledge base which is constituted spatially 
distributed decision makers (base classifiers in the bottom level and meta–classifiers destined for 
decision fusion). Each such a classifier is provided with a local knowledge base that is structured 
according to the Decision fusion meta–model. The top level of the distributed knowledge base is 
constituted by the application ontology considered as meta–knowledge; (4) A multitude of techniques 
used for training and testing of classifiers constituting Decision making meta–model; (5) Two 
different techniques used in decision combining (fusion) procedures; (6) Training and testing 
methodology; and (7) Methodology of Allocation and Management of Training and Testing Datasets. 
The above components of the methodology of IDL engineering constitute the conceptual basis, 
determine the necessary algorithms and also generic architecture of the applied multi-agent IDLS.  

3. The developed technology of multi-agent data and information fusion systems engineering, 
implementation and deployment supposes that IDS and IDLS (as applied MASs) are designed by use 
of two software tools that were developed by authors of this Report. These software tools are Multi-
agent System Development Kit (MASDK) and Information Fusion Learning Toolkit. These tools 
compose the set of components destined for support of IDL MAS design technology and thus together 
they constitute software tool for IDL MAS technology support. The first toolkit, MASDK, mostly 
supports engineering, implementation and deployment of the reusable components of IDL MAS that 
weakly depend on the particular application domain. The second one, Information Fusion Learning 
Toolkit, is responsible for engineering of the domain and application-dependent components of IDL 
MAS.  

One of two main components of MASDK is so-called “generic agent” while the second one is 
composed of a number of editors destined for specialization of “generic agent” according to particular 
application in design. Use of such an approach to multi-agent system design leads to very flexible 
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technology in which the target MAS is specified formally in a language (this specification is called 
MAS “System kernel”) and afterwards deployed (installed) within a computer network. In case of 
necessity of MAS modification the designers can do this through modifying specifications of the 
respective components of the system in the System kernel with the subsequent re-generating of the 
software agents. The main peculiarity of the technology part supported by Information Fusion 
Learning Toolkit is that the latter actually implements a novel kind of IF technology that can be 
reasonably called "agent-mediated technology". This class of technology assumes that design of IDL 
MAS is performed by distributed collaborating designers which is activity mediated by a number of 
agents specifically destined for support of collaboration of designers and dismiss them from a number 
of routine engineering operations.  

4. The training and testing data for IDL are historical interpreted audit data containing sequences 
of users' activity (“cases”) that can correspond to “normal”, “abnormal” and “interpreted abnormal” 
data (in the last case it is supposed that the class of attack is determined definitely). In order to 
construct an efficient IDL MAS, it is necessary to utilize an interconnected complex of audit data 
received from multiple sources and representing data from different levels of generalization (on the 
network, OS, application, and additional sources levels). Addressing multiple information sources may 
significantly increase the validity of decisions related to attack detection and network security.  

The taxonomies of these data sources can be formed by different tags (see Chapter 1): (1) The 
taxonomy, which classifies data sources due to location of source and software generating data, 
includes the network-based sources (depending on network layers and used protocols) and host-based 
sources (represented by operating system audit trail, system logs, and application-related audit data); 
(2) The taxonomy, which classifies data sources due to processing level, consists from primary sources 
(network traffic, host command (system calls) traffic, etc.), preprocessed sources (tcpdump (for 
packets), preprocessed OS audit trail, system logs, and audit data of different applications), and 
generalized sources (generated by statistical processing of preprocessed sources); (3) The taxonomy, 
which classifies data sources due to an object, with which the data are associated, is based on the 
network-based sources (packets, connections, all network traffic) and host-based sources (traffic 
within a connection, processes, users, files and directories, disks, system registry, etc.).  

Four typical structures of data that can be used in IDL task: Time-based sequential (temporal) data, 
Sequential (ordered) data, Relational (non-sequential) data, and Transactional data. The typical 
measurement scales of ID learning data are as follows: Binary (or Boolean), Categorical, Linear 
ordered, and Real.  

The complexity of attack detection learning mechanisms can be significantly reduced through the 
preliminary analysis and identification of the most representative and informative attributes of 
computer network users' activities that are registered in the audit data. Among such attributes are 
repeated patterns of events, mistyped commands, indications of exploitation of the known 
vulnerabilities, illegal parameters, irregularities in the network traffic parameters and contents, 
substantial discrepancies in the values of attributes that characterize the system subjects' operations 
profile and unexplained problems (see Chapter 1). Involvement of experts at this stage of learning 
could substantially cut down the pattern search and dimensions of data needed for learning.  

5. The basis of the IDL problems solutions is many-aspect usage of ontology. Consistent operation 
of a large scale distributed system, which makes decisions in a knowledge-based fashion, can be 
provided in case if agents making up the system are able to “understand” each other. The efficient way 
to achieve mutual understanding of agents is to use ontology-based approach representing the shared 
knowledge of distributed entities that form the necessary basis for local knowledge bases consistency, 
distributed knowledge base integrity and correct interpretation of the messages, which entities 
exchange with (see Chapter 1). The multi-level ontology of the IDL problem unites a structured 
multitude of basic notions. This ontology encompasses the notions from several subject domain 
ontologies, namely, “Data Fusion and Data Fusion Learning problem domain ontology”, “Intrusion 
Detection application ontology” and “Intrusion Detection Learning application ontology” (see Chapter 
2). The proposed technology for development and implementation of application ontology supports 
the development of shared and private components of application ontology that are “coherent” with 
the intrusion detection problem ontology. The ontology developed serves as a basis for design and 
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implementation of the upper-level representation of distributed knowledge base of IDL MAS. This 
level of knowledge provides, on the one hand, integrity of the distributed knowledge base, and on the 
other hand, “mutual understanding” of the agents interacting via message exchange.  

6. The multitude of methods that covers the needs of IDL task includes methods for combining 
decisions produced by base-level classifiers on the basis of different data sources containing fragments 
of information about status of host operation security, and also data mining and knowledge discovery 
techniques that are used for training and testing of base-level classifiers (see Chapter 1). Although a 
lot of methods of data mining and knowledge discovery developed for different types of data structure 
exist, four basic methods were selected. The selection is based on analysis of data structures that can 
be perceived or computed within a host with the purpose of analysis of this host security status. The 
selected methods are: FP-growth method of frequent patterns and association rules mining aiming at 
extraction of useful patterns from transactional (sequential) data; VAM (Visual Analytical Mining) 
aiming at mining rules and other kinds of pattern from numerical data; GK2 algorithm aiming at 
mining discrete data, and temporal data mining algorithm aiming at mining rules from temporal 
sequences of binary and/or numerical data.  

7. In the developed technology Intrusion Detection Learning and Intrusion Detection procedure 
itself can be considered either as components of a single system possessing off–line learning 
capabilities, or they can be considered as the tasks of different systems. In the last case IDL system 
plays the role of an auxiliary system needed only in design and implementation stages of IDS 
development (see Chapter 3).  

The IDS is viewed as a multisensor multi-level IF system. This system makes decisions on the 
basis of a multi-level model of processing of input data (network input traffic and/or audit data). The 
learning technology and respective interaction of both components of IDL MAS is developed in depth, 
implemented and validated. Multi-agent architecture of IDL MAS consists of two kinds of 
components: (1) Local data source components responsible for operating with particular data sources 
and (2) Meta-level component responsible for coordination of the performance of component of the 
first type and also for management of creation of global coherent problem ontology, shared and private 
components of application ontology, and also for combining decisions of source-based classifiers at 
meta-level. Local data source components of the system comprise the following parts: Data source 
managing agent responsible for design of its own private and shared parts of application ontology and 
their co-ordination with the problem ontology; KDD agent responsible for training and testing of the 
classification agents of IDS associated with the local data source, learning meta-classifier(s) and/or 
referee(s) of the local data source; Local classification agents producing decisions on the basis of the 
local data source; Server (library) of learning method that comprises a multitude of KDD methods, 
metrics for evaluation of the learning quality and other functionalities associated with the solving of 
knowledge engineering tasks; Local database and user interface providing interactive mode of its 
operation. The architecture of the meta-level component comprises the following agents: KDD Master 
agent responsible for design and consistency maintenance of global IDS ontology, realization of a 
protocol of the local ontology coordination, analysis of local source data structures, support for 
classification tree design, support for combining decision tree design, setting and passing to the 
respective data sources the KDD tasks to be solved locally, and management of training and testing 
data; Meta-level KDD agent aiming at solving the tasks of training and testing of agent performing the 
task of-meta-level; Agent-classifier of meta-level that stores meta-level knowledge base created by 
Meta-level KDD agent, receives decisions from local source-based agents of DF system and produces 
top-level decision; Server (library) of KDD methods that stores KDD methods, metrics for evaluation 
of the learning quality and other functionalities needed for operation of Meta-level KDD agent; user 
interface providing interactive mode of its operation. In the multi-agent IDLS the “data non-
congruency problem” is solved due to usage of Data source managing agents (associated with the 
particular data sources) and KDD master agent (which is a component of meta-level part of multi-
agent system). The idea of using in IDLS architecture agents of such kinds is new and seems 
promising.  

8. The case study for IDL has been specified (see Chapter 4). To generate training and testing data 
four types of attack categories were selected: Probing; Remote to local (R2L); Denial of service 
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(DOS); User to root (U2R). The exemplars of attacks selected for case study are SYN-scan, FTP-crack 
attack, SYN flood, and PipeUpAdmin. We have chosen three data sources for training and testing 
data: network-based (traffic level), host-based (operating system level) and application-based (FTP-
server level). Each data source was represented by four generic data structures: (1) Time ordered 
sequence of values of binary vectors of parameters specifying significant events; (2) Statistical 
attributes of particular connections (performance of a user); (3) Statistical attributes of traffic (users' 
activity) during the short term time intervals; (4) Statistical attributes of traffic (users' activity) during 
the long term time intervals.  

9. The software prototypes of Intrusion Detection Learning Components were implemented (see 
the Chapter 5). In accordance with the given data sources, the configuration of the software agents’ 
instances of the IDL MAS software prototype is formed in the following manner: (1) For each data 
source, one logical host and three instances (according to the number of data sources) of software 
agents DSM, BС, KDD agent are specified; (2) To specify the meta–level component of IDL MAS, 
one or several logical hosts are specified. In each logical host, one instance of software agents MС and 
KDD local is specified; (3) Agents of class KDD Master that support the management of training and 
decision making processes are located on the same logical host. The software code is being written in 
Visual C++, Java, KQML and XML implementing multi-agent IDLS basic components is currently in 
progress of debugging.  

10. The main results, recommendations and conclusions of the developed architecture and 
mathematical methods implemented were performed for some particular components of IDLS (see the 
Chapter 5). The detailed description of the simulation procedure and respective intermediate and final 
results is given in the Section 5.6 and Appendixes 1 and 2. The analysis of the testing results of the 
developed software prototype allow to conclude that the agent-based approach to IDL and developed 
methodology, technology and software tool constitute a promising starting platform for further 
research and development of the prospective IDLS. The developed software prototype of IDL MAS 
showed, for instance, the following results: (1) The probability of perfect classification on testing 
dataset of size of 789 on the basis of network layer data for Abnormal recognition is equal to 0,98; (2) 
The probability of perfect classification on testing dataset of size of 138 on the basis of OS and 
application layers for FTPCrack attack recognition is equal to 1,00.  

Thus, all the tasks supposed by the Project and indicated in the Work Plan are solved. The main 
Project results are methodology of intrusion detection learning, IDL ontology, mathematical 
algorithms realizing IDL, multi-agent architecture of IDL MAS, technology destined for IDL, 
implementation and deployment of software prototypes of the IDLS components, and simulation-
based evaluation of the properties, advantages and disadvantages of IDL MAS.  

The research according to this Project proved the advantages of use of multi-agent and approach, 
architecture and engineering technology as applied to the IDL task.  

Future research has to concern new phase of opposition of malefactors and computer network 
assurance systems. The new bias in this area is that the new danger is associated with distributed (in 
space and time) and stealthy attacks which are currently of great concerns. This bias requires 
fundamentally new view of intrusion detection algorithms and means. Actually, this new state of the 
art in attack organization requires development of scenario-based formal models of distributed and 
stealth attacks as well as approaches to recognition of such attacks. Practically this means that a new 
dimension has to be added to the model of intrusion detection and intrusion detection learning tasks. 
To solve this task, advanced architectures, approaches, formal frameworks, models and particular 
techniques are needed. They must constitute a new phase of the research in the intrusion detection 
scope.  
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Appendixes. Logs of Operation of the Developed Software Prototype of 
Multi-agent Learning System: Training and Testing for the 
Application Corresponding to the Case Study 

The purpose of this Appendix is to demonstrate the operation of the developed multi-agent 
distributed data mining and decision making system prototype (including IDLS and IDS components) 
and the respective technology as applied to the training and testing dataset from intrusion detection 
learning area that was developed by authors of this Report1. The dataset itself was described in 
Chapter 5. Let us note that this data corresponds to three different data sources of network level, host-
based level and application level (but in experiments fulfilled two last levels were combined). 
Additionally, each above mentioned data source includes temporal and statistical data calculated on 
different (short term and long term) basis. Let us also note that the necessity to develop new training 
and testing dataset was entailed by the fact that didn't succeed in finding anywhere a dataset of the 
more or less complicate structure that contain data sources of different levels and several data types in 
each of them.  

Appendix A. Training and Testing on the Basis of Network-based Datasets  

1. Classes and Data Sets  

1.1. Structure of classes  

• Normal:  Connection Status ='Normal'; 
• Abnormal: Connection Status ='NOT Normal', which includes Abnormal user activities and 

attacks.  
Classification tree includes Root node with 2 branches leading to the nodes marked as Normal and 

Abnormal.  

1.2. Analysis of datasets in the source NetLevel – Connections  

Number of cases – 432.  

ID_ENTITY 432 
Normal 114 
Abnormal 318 

 
Assignment of data for training and testing of base classifiers: 

- Connection.ID_ENTITY<= ’Thu Jul 17 21:27:54,960745 2003’ AND Normal 
- Connection.ID_ENTITY<=’Thu Jul 17 22:01:34,172798 2003’ AND Abnormal 

Number of cases of the classes:  
Normal – 57; 
Abnormal – 157. 

 
Conditions for selection of training data:  

Percentage 100%: (Connection.ID_ENTITY <= 'Thu Jul 17 21:24:39,126390') AND Normal 
Percentage 50%: (Connection.ID_ENTITY <= 'Thu Jul 17 22:01:34,172798 2003') AND 

Abnormal  
Number of cases of the classes:  

Normal – 29; 
Abnormal – 78.  

 
Conditions for selection of training data: 

Percentage 100%: ((Connection.ID_ENTITY > 'Thu Jul 17 21:24:39,126390') AND 
(Connection.ID_ENTITY<= 'Thu Jul 17 21:27:54,960745 2003')) AND Normal 

                                                 
1 This dataset can be made available to the Partner (EOARD) on request. 
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Percentage 50%: (Connection.ID_ENTITY <= 'Thu Jul 17 22:01:34,172798 2003') AND 
Abnormal 

Number of cases of the classes: 
Normal – 28; 
Abnormal – 78.  

2. Training of the base classifier BKConnectionNormal 

While analyzing data of training dataset, we determine the attributes having no variation (features) 
to delete from dataset as non–informative:  

- Connection_SYN_src_dst 
2.1. Extraction rules of class Normal 
Search for predicates by use VAM algorithm:  
Result: 6 rules: 
�

BKConectionNormal_N1=� (+1603.4361861057725000*Connection.Packets-
20773.3892031407300000� >� 0)� AND� (+0.9999874021551684*�
Connection.Duration+0.0050195150121859*Connection.PSH_dst_src-
0.0668631266297002� >� 0)�
 
BKConectionNormal_N2=(+0.3898192994799297*Connection.Packets-
0.9208913691380632*Connection.PSH_src_dst-3.0964780702130232� >� 0)� AND�
(+0.9997786108798298*Connection.Duration-0.0210411317946090*�
Connection.PSH_dst_src-0.0408048178738170� >� 0)�
�
BKConectionNormal_N3=(+0.9892747788830054*Connection.Duration+0.14606646386
48474*Connection.Packets-1.8915060806311901� >� 0)� AND�
(+0.9999469760542993*Connection.Duration+0.0102978191799450*Connection.PSH_
dst_src-0.0678848187709065� >� 0)AND� (+0.9974120304999046*�
Connection.Duration-0.0718974367697309*Connection.PSH_dst_src+�
0.6218769870346778� >� 0)�
�
BKConectionNormal_N4=(-0.2660029503134025*Connection.Duration+�
0.9639722145500697*Connection.FIN_src_dst-0.1513078382144927� >� 0)� AND�
(� (+0.9934378934982687*Connection.Duration-0.1143728628728094*�
Connection.PSH_src_dst+0.9060659801972677� >� 0)AND� (-
0.6627664212686979*Connection.Duration-0.7488261953475471*�
Connection.PSH_src_dst+5.5152290587675612� >� 0)AND� NOT(-
0.9176616247245791*Connection.Duration+0.3973627341709909*Connection.PSH_sr
c_dst-0.3403521618557532� >� 0)� )� OR� ((+0.9934378934982687*�
Connection.Duration-0.1143728628728094*Connection.PSH_src_dst+�
0.9060659801972677� >� 0)AND� NOT(-0.6627664212686979*� Connection.Duration-�
0.7488261953475471*Connection.PSH_src_dst+� 5.5152290587675612� >� 0)AND� (-
0.9176616247245791*Connection.Duration+�
0.3973627341709909*Connection.PSH_src_dst-0.3403521618557532� >� 0))�
�
BKConectionNormal_N5=(+1666.6099790907281000*Connection.Packets+262.1039945
892520100*Connection.PSH_dst_src+231.3465640879086600*Connection.PSH_src_ds
t-22684.4403668937520000� >� 0)�
�
BKConectionNormal_N6=(-0.2057401826907004*Connection.Duration+�
0.3950037687846065*Connection.FIN_dst_src+0.3950037687846065*Connection.FIN
_src_dst+0.3841303265549015*Connection.SYN_dst_src+0.0372738357257134� >� 0)�
AND� (+0.0074761790042960*Connection.Duration+�
0.2615179611123543*Connection.FIN_dst_src+0.2615179611123543*Connection.FIN
_src_dst-0.2868432626062151*Connection.Status+� 0.2361926596184932�
*Connection.SYN_dst_src+0.0834705042691872� >� 0)�
�
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Search for predicates by use GK2 algorithm. 
While analyzing data of training dataset, we determine the attributes having no variation (features) 

to delete from dataset as non–informative  
GK2 algorithm attributes:  

• Maximal length of rules – 6 (total number of predicates forming conjunction in rule 
premise); 

• Coverage – 1.  
Result: 5 rules:  

BKConectionNormal_RN1=BKConectionNormal_N2�
BKConectionNormal_RN2=BKConectionNormal_N3�
BKConectionNormal_RN3=BKConectionNormal_N4�
BKConectionNormal_RN4=BKConectionNormal_N5�
BKConectionNormal_RN5=BKConectionNormal_N1�

Validation of  the rules overall coverage (see Fig.A.0) 
Coverage is equal to 79% for the cases of class Normal. 

 

 

 

 

Two rules are selected for use in BKConectionNormal base classifier that are: 
BKConectionNormal_RN1 and  BKConectionNormal_RN4 . 

Knowledge base of this classifier is as follows:  
BKConectionNormal_RN1 OR BKConectionNormal_RN4  . 

Fig.A.0. 
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3. Training of the base classifier BKPacketsNormal 

This base classifier deals with temporal data, each case corresponds to a connection and dataset is 
broken up in to samples: Normal and Abnormal.  

The average number of packets comprising different attacks is 4,68 and for connections of the class 
Normal this length is 23,03.  

The window used for analysis of connection status is 12 packets. According to the temporal data 
mining and decision making algorithms used in this project the input sequence is predicted up to the 
packet # 12. Just to remind, the algorithm is based of assessment of the value of discrepancy of input 
sequences approximated via use of a statistical model of the Normal connections.  

The results of simulation given in Fig.A1 shows some attributes of distribution of such discrepancy 
for both Normal and Abnormal traffics given as a dependence from the number of the current packet 
within 12-packets window.  
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Fig.A1. Distribution of the discrepancy for both Normal and Abnormal traffics in time  
(given as a dependence from the number of the current packet within 12-packets window) 

Fig.A2. Histogram of discrepancies for the packet number 3 
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The histograms presenting distributions of the above discrepancy for different values of the packet 
numbers (particularly, for packets of numbers 3, 4, 12) are given in Fig.A2, Fig.A3 and Fig.A4.  
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3.1. Selection the threshold functions 

Several variants of the base classifier's algorithm were computed based on use of different 
threshold functions for each particular number of input packets within the chosen 12-packets window. 
The threshold functions were computed automatically for different given values of coverage factor. 
Each variant makes it possible to determine the probabilities comprising confusion matrix and that is 
why to select the value of the threshold that meets given constraints to false positive and false negative. 
Particularly, the following values of coverage factor for dataset of the class Normal were used in the 
above search procedures:  

BK_75 – threshold= 75% 
BK_80 – threshold= 80% 
BK_85 – threshold= 85% 
BK_90 – threshold= 90% 
BK_95 – threshold= 95% 
BK_100 – threshold= 100% 

 

Fig.A3. Histogram of discrepancies for the packet number 4 

Fig.A4. Histogram of discrepancies for the packet number 12 



 159

3.2. Assessment of the quality of performance of the base classifier given threshold function  

The first sample which attributes are given in the Fig.A5 corresponds to the dataset of the class 
Normal whereas the second one corresponds to the dataset of class Abnormal which don't includes the 
cases of attack of type SYNFlood ("the length" of this attack is equal to 1 packet within a connection 
and this packet is not discernable as compared with normal connection; such kind of attack cannot be 
detected on the basis packet sequence it correspond to). The second sample (see Fig.A5) contains all 
connections including those ones which correspond to SYNFlood attack). 

The base classifier selected is that which possess the best quality for threshold= 95% (see Fig.A5).  
 

 
 
 
 

4. Training of the base classifier BK_5sec_Normal 

The training data found out such that it does not contain cases of attacks of classes SYNFlood and 
PipeUpAdmin (these attacks are developing in time very rapidly and that is why, as a rule, at the time 
of the 5 sec. interval end this kind of attack has already ended thus giving no information for making 
decision at that time). Thus, dataset for training this base classifier include connections of the class 
Normal and two types of attacks because the other attacks do not reveal themselves in such kind of 
data.  

 

Fig.A5.  
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4.1. Analysis of datasets in the source NetLevel – Agreg5sec 

Total number of cases – 224. 
 
ID_ENTITY 224 
Normal 112 
Abnormal 112 

 
Assignment of data for training of base classifier: 

((Agreg5sec. ID_ENTITY)<=’21:27:54,516691’) AND Normal) OR ((Agreg5sec.ID_ENTITY <= 
‘21:47:48,258865’) AND Abnormal) 

Number of cases of the classes: 
Normal - 56 
Abnormal – 56  

Assignment of data for testing of base classifier: 
((Agreg5sec. ID_ENTITY)>’21:27:54,516691’) AND Normal) OR ((Agreg5sec.ID_ENTITY > 
‘21:47:48,258865’) AND Abnormal) 

Number of cases of the classes: 
Normal - 56 
Abnormal – 56  

4.2. Extraction rules of class Normal 

Search for additional predicates on the basis of VAM algorithm  
Result: 7 predicates as follows: 

�
BKAgreg5secNormal_N1=� (-0.6852682709941311*Agreg5sec_count_dest-
0.7282907364292875*Agreg5sec_count_serv_dest+3.6823386836223091� >� 0)� AND�
(-0.5343733474352195*Agreg5sec_count_src-
0.8369532371383244*Agreg5sec_count_dest-
0.0604681322555463*Agreg5sec_count_serv_dest+2.2797493137921476� >� 0)�
 
BKAgreg5secNormal_N2=(-
0.9433238313802486*Agreg5sec_count_src+0.3318736945738371*Agreg5sec_count
_dest+1.6569773535293761� >� 0)AND�
(+0.4436340405383322*Agreg5sec_count_src-
0.8962080328113743*Agreg5sec_count_dest+2.5614289435551139� >� 0)�
�
BKAgreg5secNormal_N3=� (-0.6201867455880064*Agreg5sec_count_dest-
0.7844542055448218*Agreg5sec_count_serv_src+3.5582341021334010� >� 0) 
 
BKAgreg5secNormal_N4=� (-0.6547940947872492*Agreg5sec_count_src-
0.7558073123698573*Agreg5sec_count_serv_dest+3.1337185444345641� >� 0)�
�
BKAgreg5secNormal_N5=� (-0.2523670376261696*Agreg5sec_count_src-
0.9676315819152408*Agreg5sec_count_serv_src+1.7864319565607989� >� 0)�
�
BKAgreg5secNormal_N6=� (-0.5343733474352195*Agreg5sec_count_src-
0.8369532371383244*Agreg5sec_count_dest-
0.0604681322555463*Agreg5sec_count_serv_dest+2.2797493137921476� >� 0)�
�
BKAgreg5secNormal_N7=� (-47.4270890788748010*Agreg5sec_count_src-
46.8011669194704820*Agreg5sec_count_dest-
49.1082675468836240*Agreg5sec_count_serv_dest+470.5431037702243200� >� 0)�

Extraction rules via use of GK2 algorithm:  
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While analyzing data of training dataset, we determine the attributes having no variation (features) 
to delete from dataset as non–informative. 

GK2 algorithm attributes: 
• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in 

premise); 
• Coverage – 1  

Result: 6 rules: 
BKAgreg5secNormal_RN1=BKAgreg5secNormal_N6�
BKAgreg5secNormal_RN2=BKAgreg5secNormal_N1�
BKAgreg5secNormal_RN3=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N7�
BKAgreg5secNormal_RN4=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N4�
BKAgreg5secNormal_RN5=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N3�
BKAgreg5secNormal_RN6=BKAgreg5secNormal_N2� AND� BKAgreg5secNormal_N5�

Assessment of the quality of the rules extracted 
The total coverage factor for all rules extracted for dataset of the class Normal – 100% (see Fig.A6 

for details). 
 

 
�
�

�

The best rule in respect to testing dataset (it is selected as the base classifier rule):  
BK Agreg5secNormal_RN4.  

 

Fig.A6  
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5. Training of the base classifier BK NetLevel – Agreg100con 

This data source is computed on the basis of all the cases of Normal and Abnormal connections but 
some anomalies do not reveal themselves (non-discernable with Normal class connections) in it.   

5.1. Analysis of datasets in the source NetLevel –Agreg100con. 

Total number of the cases – 332. 
 

ID_ENTITY 332 
Normal 15 
Abnormal 317 

 
Because of limited number of cases of the class Normal, all the cases are used both in training and 

testing procedures.  
Conditions for selection of training data: 

(Normal) OR ((Agreg100con.ID_ENTITY <= ‘21:48:23,480853’) AND Abnormal) 
 OR ((Agreg100con.ID_ENTITY >= ‘22:01:34,845119’) AND Abnormal) 

Number of cases of the classes: 
Normal - 15 
Abnormal – 156 

Assignment of data for testing of base classifier: 
 (Normal) OR (((Agreg5sec.ID_ENTITY > ‘21:48:23,480853’) AND Abnormal) AND 
((Agreg5sec.ID_ENTITY < ‘21:47:48,258865’) AND Abnormal)) 

Number of cases of the classes: 
Normal - 15 
Abnormal – 161 

5.2. Extraction rules of class l Normal 

Search for additional predicates on the basis of VAM algorithm  
Result: 6 rules (predicates) as follows: 

BKAgreg100conNormal_N1=� (� (-1.0*Agreg100con_count_dest+�
85.6672250771610920� >� 0)AND� NOT(-0.9999978565374079*�
Agreg100con_count_dest-0.0020704880076024*�
Agreg100con_count_serv_dest1+82.6828606139623760� >� 0)AND�
NOT(+0.8660540915078701*Agreg100con_count_dest-0.4999503081131942*�
Agreg100con_count_serv_dest1-39.8995280219891410� >� 0)AND�
(+0.6702207833765178*Agreg100con_count_dest+0.7421617758482088*Agreg100con
_count_serv_dest1-69.5947824793456110� >� 0)� )� OR� (� (-
1.0*Agreg100con_count_dest� +85.6672250771610920� >� 0)AND� NOT(-
0.9999978565374079*Agreg100con_count_dest-0.0020704880076024*�
Agreg100con_count_serv_dest1+82.6828606139623760� >� 0)AND�
(+0.8660540915078701*Agreg100con_count_dest-0.4999503081131942*�
Agreg100con_count_serv_dest1-39.8995280219891410� >� 0)AND�
NOT(+0.6702207833765178*Agreg100con_count_dest+0.7421617758482088*Agreg100
con_count_serv_dest1-69.5947824793456110� >� 0)� )� OR� ((NOT� (� (-
1.0*Agreg100con_count_dest+85.6672250771610920� >� 0)AND� NOT(-
0.9999978565374079*Agreg100con_count_dest-
0.0020704880076024*Agreg100con_count_serv_dest1+82.6828606139623760� >�
0)AND� NOT(+0.8660540915078701*Agreg100con_count_dest-
0.4999503081131942*Agreg100con_count_serv_dest1-39.8995280219891410� >�
0)AND� (+0.6702207833765178*Agreg100con_count_dest+�
0.7421617758482088*Agreg100con_count_serv_dest1-69.5947824793456110� >� 0)� )
� OR� (� (-1.0*Agreg100con_count_dest� +85.6672250771610920� >� 0)AND� NOT(-
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0.9999978565374079*Agreg100con_count_dest-
0.0020704880076024*Agreg100con_count_serv_dest1+82.6828606139623760� >�
0)AND� (+0.8660540915078701*Agreg100con_count_dest-
0.4999503081131942*Agreg100con_count_serv_dest1-39.8995280219891410� >�
0)AND� NOT(+0.6702207833765178*Agreg100con_count_dest+�
0.7421617758482088*Agreg100con_count_serv_dest1-69.5947824793456110� >�
0)� ))� AND� (+0.9997062945178824*Agreg100con_count_dest+�
0.0242347828817369*Agreg100con_Duration-29.8661040827249590� >� 0)AND� (-
0.9697592558278408*Agreg100con_count_dest+�
0.2440634871016806*Agreg100con_Duration-138.5638718097152700� >� 0))�
 
BKAgreg100conNormal_N2=(-0.5074448557840566*�
Agreg100con_count_serv_dest1+0.8616842335439925*Agreg100con_Duration-
540.1887797977055900� >� 0) 
 
BKAgreg100conNormal_N3=(+0.9911934594955068*Agreg100con_count_dest+0.13242
17725803773*Agreg100con_Duration-101.2728549212984600� >� 0)AND� (-
0.9986189191765833*Agreg100con_count_dest+0.0525381219933927�
*Agreg100con_Duration+49.8709414482802980� >� 0)AND�
(+0.1187457411991160*Agreg100con_count_dest+0.9929246944995741*Agreg100con
_Duration-578.4997239314012600� >� 0) 
 
BKAgreg100conNormal_N4=(+0.5481350872495229*Agreg100con_count_src-
0.8363898170864814*Agreg100con_count_dest+50.1172271637927270� >� 0)AND� (-
0.7140075159528438*Agreg100con_count_src-
0.7001380343638313*Agreg100con_count_dest+94.1250796631528740� >� 0)AND�
NOT(-0.0080065900516841*Agreg100con_count_src-
0.9999679467441665*Agreg100con_count_dest+83.7628284144334430� >� 0)�
�
BKAgreg100conNormal_N5=(+0.4142582308379404*Agreg100con_count_serv_src1+0.
9101593916358935*Agreg100con_Duration-593.9597276776623900� >� 0)AND� (-
0.5548301631005419*� Agreg100con_count_serv_src1+�
0.8319636350909972*Agreg100con_Duration-527.2686026260485100� >� 0)�
�
BKAgreg100conNormal_N6=(� (+0.5844387466391736*Agreg100con_count_src-
0.8114378296744809*Agreg100con_count_serv_dest1+25.9735995501971500� >�
0)AND� (-0.9959752854657177*Agreg100con_count_src-
0.0896282920816968*Agreg100con_count_serv_dest1+50.6194808068264380� >�
0)AND� NOT(-0.3846057289944088*Agreg100con_count_src�
+0.9230809461930624*Agreg100con_count_serv_dest1-2.6532537564522283� >�
0)AND� (+0.9986096161275863*Agreg100con_count_src-
0.0527146523986899*Agreg100con_count_serv_dest1-34.7089776722383410� >� 0))�
OR� (� NOT(+0.5844387466391736*Agreg100con_count_src-
0.8114378296744809*Agreg100con_count_serv_dest1+25.9735995501971500� >�
0)AND� NOT(-0.9959752854657177*Agreg100con_count_src-
0.0896282920816968*Agreg100con_count_serv_dest1+50.6194808068264380� >�
0)AND� (-0.3846057289944088*Agreg100con_count_src+�
0.9230809461930624*Agreg100con_count_serv_dest1-2.6532537564522283� >� 0)AND�
(+0.9986096161275863*Agreg100con_count_src-
0.0527146523986899*Agreg100con_count_serv_dest1-34.7089776722383410� >� 0)� )�

�
Search for rules on the basis of GK2 algorithm  

While analyzing data of training dataset, we determine the attributes having no variation (features) 
to delete from dataset as non–informative. 

Attributes:  
• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in 

premise); 
• Coverage – 1  



 164

Result: 9 rules as follows: 
BKAgreg100conNormal_RN1=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N2�
BKAgreg100conNormal_RN2=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N3�
BKAgreg100conNormal_RN3=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N5�
BKAgreg100conNormal_RN4=BKAgreg100conNormal_N2� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN5=BKAgreg100conNormal_N3� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN6=BKAgreg100conNormal_N1� AND�
BKAgreg100conNormal_N4�
BKAgreg100conNormal_RN7=BKAgreg100conNormal_N4� AND�
BKAgreg100conNormal_N5�
BKAgreg100conNormal_RN8=BKAgreg100conNormal_N6�
BKAgreg100conNormal_RN9=NOT� BKAgreg100conNormal_N2� AND�
BKAgreg100conNormal_N3�

�

�
�

�

Assessment of the quality of the rules extracted 
The total coverage factor for all rules extracted for dataset of the class Normal – 100% (see Fig.A7). 
The basis rule selected as the best one:  

BKAgreg100conNormal_RN3  

Fig.A7 
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6. Training of meta-classifier of the Network-based level 

Training procedure for meta-classifier of the Network-based level is started for the class Abnormal. 
While forming the meta-data, 3 additional features measured in logical scale containing 

information about type of an event initialized decision making procedure are added, in particular, they 
are as follows:   

- InitConn – decision has to be made due to connection completion.  
- Init5sec – decision has to be made due to completion of the 5-second interval;  
- Init100conn – decision has to be made due to completion of the interval containing 100 

connections. 

6.1. Analysis of meta-data of the Network-based data source 

Total number of cases used for computing meta-data – 2085. 
 

ID_ENTITY 2085 
Normal 1563 
Abnormal 522 

Break up of data into training and testing 
Training data set: 
Total number 1296 cases, between them: 

Normal - 1034 
Abnormal – 262 

6.2. Training of the meta– classifier MCNormal (Meta-classifier of the Network-based data 
source) 

Search for rules on the basis of GK2 algorithm  
While analyzing data of training dataset, we determine the attributes having no variation (features) 

to delete from dataset as non–informative. 
Attributes:  

• Maximal "length" of the rules– 7 (total number of predicates connected by conjunction in 
premise); 

• Coverage – 1  
The result: 18 rules given below: 

 
MCNormal_RN1� =� BK_ConnAgreg� AND� BK_Agreg5sec� AND� NOT� Init100conn�
MCNormal_RN2� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� NOT� Init100conn�
MCNormal_RN3� =� BK_ConnAgreg� AND� BK_Agreg5sec� AND� InitConn�
MCNormal_RN4� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� InitConn�
MCNormal_RN5� =� BK_ConnPacket� AND� � NOT� BK_ConnAgreg� AND� BK_Agreg5sec�
MCNormal_RN6� =� � NOT� BK_ConnPacket� AND� BK_ConnAgreg� AND� BK_Agreg5sec�
MCNormal_RN7� =� BK_Agreg100con� AND� Init5sec�
MCNormal_RN8� =� BK_ConnAgreg� AND� BK_Agreg100con�
MCNormal_RN9� =� BK_Agreg100con� AND� NOT� InitConn�
MCNormal_RN10� =� BK_ConnPacket� AND� BK_Agreg100con�
MCNormal_RN11� =� BK_ConnAgreg� AND� Init5sec�
MCNormal_RN12� =� BK_ConnPacket� AND� BK_Agreg5sec� AND� Init5sec�
MCNormal_RN13� =� BK_ConnAgreg� AND� NOT� InitConn� AND� NOT� Init100conn�
MCNormal_RN14� =� BK_Agreg100con� AND� Init100conn�
MCNormal_RN15� =� NOT� BK_ConnPacket� AND� NOT� BK_Agreg5sec� AND� Init5sec�
MCNormal_RN16� =� NOT� BK_ConnPacket� AND� NOT� BK_Agreg5sec� AND� NOT� InitConn�
MCNormal_RN17� =� BK_ConnAgreg� AND� NOT� BK_Agreg5sec� AND� NOT� InitConn�
MCNormal_RN18� =� NOT� BK_ConnPacket� AND� BK_ConnAgreg� AND� NOT� InitConn�

�
�
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Assessment of the quality of the rules extracted 
The total coverage factor for all rules extracted for dataset of the class Normal – 98% (see Fig.A8 

for details). 
The basis rule selected as the best ones assigned coverage factors are as follows: 

MCNormal_RN1� –� 66%�
MCNormal_RN2� –� 76%�
MCNormal_RN3� –� 65%�
MCNormal_RN4� –� 75%�

Total coverage of the training data set – 78% 
Total coverage of the testing data set 98% 

 

 
 
 

The resulting meta-classification rule is as follows:  

MCNormal: MCNormal_RN1 OR MCNormal_RN2 OR 
MCNormal_RN3 OR MCNormal_RN4 

Let us assess the increase of quality provided by use of meta-classifier as compared with the best 
base classifier. The best base classifier provides 73% classification quality for the cases of the training 
dataset and 83% – for the cases of the testing dataset (see Fig.A9).  

At the same time, the developed meta-classifier provides 81% classification quality for the cases of 
the training dataset and 98% – for the cases of the testing dataset.  

Meta-classifier uses the following base classifiers of the Network-based level:  
- BK_ConnAgreg;  
- BK_ConnPacket;  
- BK_Agreg5sec.  

 

Fig.A.8 
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 Fig. A.9 
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Appendix B. Data Sources of OS and Application Level  

1. Learning detection of FTPCrack attack 

Training and testing dataset used for learning are structured in the same way as dataset of the 
network-based level considered above in the Appendix A. The sequence of activities is also the same 
as previously described in Appendix A. This is the reason why the procedures below are described 
very briefly.  

1.1. Learning of classification on the basis of temporal data (sequences of headers of packets) 

Length of the sliding window is equal to 4 packets. Here it is also used a multi-dimensional 
regression for prognosis of the packets' fields on the basis of information has already been received. 

The model for assessment of the discrepancy between sequences of packet headers received and 
those corresponding model of traffic for FTPCrack attack is built. Histograms corresponding to 
distribution of discrepancy dependent of the number of input packet are computed.  

1.2. Assessment of the quality of base classifier for different values of discrepancy threshold  

Several variants of the base classifier's algorithm were computed based on use of different 
threshold functions for each particular number of input packets within the chosen 4-packets window. 
The threshold functions were computed automatically for different given values of coverage factor. 
Each a variant makes it possible to determine the probabilities comprising confusion matrix and that is 
why to select the value of the threshold that meets given constraints to false positive and false negative. 
Particularly, the following values of coverage factor for dataset of the class Normal were used in the 
above search procedures:  

FTPBC_75 – threshold 75% 
FTPBC_80 – threshold 80% 
FTPBC_85 – threshold 85% 
FTPBC_90 – threshold 90% 
FTPBC_95 – threshold 95% 
FTPBC_100 – threshold 100% 

The result of selection is base classifier corresponding to the coverage threshold equal to 85% (see 
Fig. B1).  
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The coverage factor of this classifier is equal to 96%. 

2. Training of the base classifier FTPBC_Agreg5sec 

While analyzing data of training dataset, we determine the attribute having no variation (features) 
to delete from dataset as non–informative that is here "hots".  

2.1. Learning of classification on the basis of temporal data (sequences of headers of packets) 

It consists of search for additional predicates on the basis of VAM algorithm for the subspace 
"failed logins"–"successful_logins"  
The result is as follows: 

BCFTP_FTPCrackAgreg5sec= (+0.9674332962268508*failed_logins-
0.2531260898280744*successful_logins-0.8269450936460111� >� 0)�

Due to small dimensionality of this space this predicate is single and it is used as the premise of the 
respective classification rule.  

2.2. Assessment of the quality of base classifier  

The value of the coverage factor for this rule intended for detection of FTPCrack attack is equal to 
100%. 

The resulting probability of correct classification for this classifier (FTPBC_Agreg5sec) 
corresponds to 89% for training dataset and 100% for testing one (see Fig.B.2). 

Fig.B.1 
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3. Training of the base classifier FTPBC_Agreg30con 

This classifier makes decisions on the basis of an aggregation of the input information of the length 
30 connections.  

3.1. Dataset analysis 

Total number of the instances – 49 
 

ID_ENTITY 49 
FTPCrack 16 
Other 33 

 

3.2. Extraction rules of class l:  FTPCrack 

Search for additional predicates on the basis of VAM algorithm. It results in extraction of 2 
predicates:  
 

FTP_A30_FTPCrack1=(0.9990071650342662� *� failed_logins� +0.04454979472� *�
Duration-28.9938983637157080>0)� AND� (0.9999994775514343*� failed_logins+�
0.0010222019656996*Duration� -1.4399535579769640� >� 0)�
�

Fig.B.2 
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FTP_A30_FTPCrack2=(-0.9990125210414768*successful_logins� +0.044429526�
*Duration+1.0262718031633660� >0)AND� (-0.9999995594442007*�
successful_logins+0.0009386753456492*� Duration+28.7101899404217950� >� 0)�
These predicates are used as the premises for the rules.  

3.3. Assessment of the quality of the rules extracted 

The total value of the coverage factor for these rules used for classification of the FTPCrack 
attacks is equal to 100%.  
 

�

The base rule of the classifier FTPBC_Agreg30con intended for detection of FTPCrack attack is 
the rule FTP_A30_FTPCrack1.�
�
�

4. Training of the meta–classifier for detection of FTPCrack in the application level 

4.1. Dataset analysis 

While forming the meta-data, 3 extra features measured in logical scale containing information 
about type of an event initialized decision making procedure are added, in particular, they are as 
follows: 

 -InitConn – decision making procedure is initiated by event "end of connection";  
- Init5sec - decision making procedure is initiated by event "end of 5 second interval":  
- Init30conn – decision making procedure is initiated by event "end of 30 connection length 

interval".  
The total number of instances in meta–dataset is equal to 275. 

 
ID_ENTITY 275 

Fig.B.3 
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FTPCrack 80 
other 195 

 
Breaking up the meta–dataset into training and testing ones:  

Training dataset contains 137 instances, at that, distribution of classes:  
of class FTPCrack - 40 
other – 97 

4.2. Extraction rules of class l:  FTPCrack forming meta– classifier FTPMC_FTPCrack 

Search for rules on the basis of GK2 algorithm  
While analyzing data of training dataset, we determine the attributes having no variation (features) 

to delete from dataset as non–informative. 
 

 
 
 

Rule's attributes:  
• Maximal length of rules – 6 (the total number of predicates forming conjunction in rule 

premise)  
• Coverage factor – 1  

The result:  4 rules as follows:  
 

MCFTPCrack_RN1� =� FTPBC_Packets�
MCFTPCrack_RN2� =� FTPBC_Agreg5sec� AND� InitConn�
MCFTPCrack_RN3� =� FTPBC_Agreg5sec� AND� � NOT� Init5sec�
MCFTPCrack_RN4� =� FTPBC_Agreg5sec� AND� Init30conn�

�
The total coverage factor of these rules intended for detection of FTPCrack attack is equal to 98%.  
The selected rules are those which provide the maximal coverage it both training and testing 

datasets:  

Fig.B.4 
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MCFTPCrack_RN1� –� 87%�
MCFTPCrack_RN4� –� 76%�

�

 
 

 

4.3. Assessment of the quality of the rules extracted 

Coverage over training dataset – 98% 
Coverage over testing dataset – 100% 

The final rule according to which meta–classifier detects FTPCrack attack:  
MCFTPCrack:� MCFTPCrack_RN1� OR� MCFTPCrack_RN4�

Let us assess the quality of this meta-classifier as compared with the quality provided by particular 
base classifiers. The best base classifier provides the correct decision in 87% of cases over training 
dataset and in 95% over testing one. The designed meta-classifier provides 87% and 100% respectively 
having the value of coverage factor equal to 98%.  
 

Figure B.5 


